首页/文章/ 详情

基于MODSIM的轻量化工程实现创新设计

7月前浏览2859

本文摘要:(由ai生成)

MODSIM是一个统一的云端设计和仿真平台,通过整合工具、模型和知识产权,提高产品设计效率,消除沟通障碍,节省时间。它支持跨领域合作,使团队成员能基于统一模型协作,不受地域限制。MODSIM具有快速创建几何结构、加快仿真速度等特性,提升创造力与竞争力。它自动完成大量手动工作,缩短产品准备时间,降低成本。通过3DEXPERIENCE平台,MODSIM确保数据和模型实时更新,减少设计错误,加速工作进程,实现团队高效并行工作。

计算机辅助设计 (CAD) 和计算机辅助工程 (CAE) 技术持续发展,互联网让我们可以跨越国界进行互联互通和协作,但即便是在如今的技术环境中,也依然存在着一定的禁闭和壁垒。由于传统流程,设计和仿真持续不断地作为离散任务循序进行使用。统一的设计和仿真,通常也被称为“MODSIM”,通过增强的产品洞察为设计和分析工程师提供创造性的协作设计所具备的关键优势。现在正是通过充分利用建模和仿真来推动创新发展的绝佳时机,这样设计团队才能更快地发挥创造力。
 
这就是创建MODSIM 的原因:让任何人——从单个设计师到跨国团队——都能开发出更好的产品,并在尽可能短的时间内将其推向市场。

采用MODSIM进行设计,有以下优势


提高效率
 
MODSIM 有助于消除设计人员与仿真专家之间的往复循环,从而加快产品的开发速度。该平台将工具、模型、知识产权、企业 / 人员所有元素进行整合,一体化的建模和仿真提高了产品设计的效率,消除了沟通障碍,节省了在不同格式下进行工作的时间。
 
跨领域紧密合作
 
基于云端的 SaaS 解决方案,工作地点可以不受位置限制且极具灵活性。设计人员、工程师和分析师可以通过统一模型进行协作,而无需导出为多种格式。项目中的每个参与方,无论身处哪个时区,都可以远程或现场并行开展工作。
 
提高创造力
 
传统的产品开发方法受到企业约束和不同平台 / 工具的制约。现有流程缺乏软件、工具集和工作方式的集成,导致交付高质量成品的速度减慢。MODSIM 方法的部分技术特性可以帮助您提高创造力:
l  快速创建并重用几何结构
l  加快仿真速度
l  先进的细分 (Sub-D)建模
l  脚本与建模
l  数据捕获
 
增强竞争力
 
MODSIM 能够消除设计优化和测试中的信息壁垒,将整个确认和验证流程都纳入到统一的工作流程中,同时在整个设计流程中提高产品洞察并降低风险,在创建预验证设计的同时缩短产品的上市时间,可助力您在竞争中始终保持遥遥领先的地位。
 
节约更多成本
 
MODSIM 可自动完成将技术应用于生产所涉及的大量手动工作,从而缩短产品做好上市准备所需的时间,进一步实现成本节约。CATIA、SIMULIA 和大量其他解决方案均可在 SaaS 环境中进行使用,无需冗长的本地配置。同时随时轻松地添加或删除席位,让您可以根据项目的需求扩展设计和仿真功能。


利用3DEXPERIENCE做出更出色的决策

 

借助 MODSIM,您的数据和模型始终都可以保持在最新状态。这一流程可加快设计和仿真工作的速度,并消除成本高昂的设计错误。您的人员可以在同一项目中并行开展工作,而不会找不到所需的数据。


来源:一起CAE吧
多学科优化CATIA材料
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-04-27
最近编辑:7月前
侠客烟雨
硕士 竹杖芒鞋轻胜马,一蓑烟雨任平生
获赞 108粉丝 87文章 148课程 0
点赞
收藏
作者推荐

一文搞懂ANSYS Workbench多场耦合仿真

本文摘要:(由ai生成)多场耦合仿真技术在工程设计中至关重要,可精确模拟实际问题,提升设计准确性及可靠性。ANSYSWorkbench作为一款综合仿真软件,能处理复杂多物理场问题,如流-热-固、电-磁-热耦合等。在航空发动机、变压器等领域,多场耦合仿真可研究各物理场相互作用。刚-柔耦合与光-机-热耦合仿真则分别适用于刚柔性体及精密光学仪器设计。这些技术有助于产品设计阶段发现问题,降低成本,实现快速迭代优化。工程实际中,结构场、温度场、流体场、电磁场相互耦合。随着产品的要求越来越高,单场载荷响应已不能满足设计要求,多场耦合仿真技术的重要性愈发凸显,更好模拟实际问题提高工程设计的准确性和可靠性。航空发动机流-热-固耦合仿真按照耦合程度,多场耦合可分为单向耦合和双向耦合。单向耦合即A场对B场有影响,而B场对A场没影响。双向耦合即A场对B场有影响,而B场对A场也有影响。按照计算方法,多场耦合主要有直接耦合法和迭代耦合法。多物理场耦合作用随着当今世界科技发展,多场耦合分析已在许多领域都有广泛的应用,如航空航天、土木工程、机械工程、电子工程、光学工程等。多场耦合分析可以帮助我们更好地理解和预测复杂系统的性能,其主要分析步骤如下:Step1:建立数学模型根据所研究的问题,将各个物理场用数学方程表示出来,如Navier-Stokes方程、波动方程、热传导方程等。Step2:确定边界条件根据实际问题的几何形状和物理特性,设定数学模型的边界条件和初始条件。Step3:求解数学模型利用数值计算方法(如有限元法、有限差分法等)求解各个物理场的数学模型,得到各个场的分布和变化情况。Step4:分析结果数据对计算结果进行分析,找出各个物理场之间的相互作用规律,评估设计方案的优劣,为工程决策提供依据。Step5:优化设计模型根据分析结果,对设计方案进行优化,以满足工程要求。流-固耦合燃烧模拟ANSYSWorkbench是功能最全面、性能最卓越的工程仿真软件之一,具备解决复杂多物理场的耦合计算能力,通过图形化界面进行多种物理场耦合的仿真分析,如流-热-固耦合、电-磁-热耦合、光-机-热耦合等。热-固耦合仿真由热力学定理可知,热胀冷缩是物体的固有属性。当环境温度发生改变时,结构的连续性或边界条件由于热胀冷缩而产生热应力,在正常工况下存在稳态热应力,在启动或关闭过程中存在瞬态热应力。由约束限制产生热应力由材料差异产生热应力一般情况下,热-固耦合为单向耦合。结构力学响应不会影响热物性、传热方式以及热边界条件,结构热应力问题可以解耦为热分析和结构分析,将热分析的温度分布作为结构分析的输入条件。结构热应力分析流程ANSYSWorkbench热-固耦合仿真分析流程,如下图所示。首先,进行结构热分析,获取温度场分布。然后,将温度作为外载荷,导入到结构力学计算中,从而得到结构热应力热变形。ANSYSWorkbench热-固耦合仿真分析流程流-固耦合仿真流-固耦合是流体力学(CFD)与固体力学(CSM)的交叉力学分支,用于研究流体流场与固体变形之间的相互作用,计算固体在流体流动作用下的应力应变,以及流体在固体变形影响下的流场改变。CAE告诉你“脑子进水”是什么感觉单向流-固耦合:数据只从流体计算传递压力到固体表面,或者数据只从固体计算发送节点位移到流体界面。固体计算既可采用静态结构分析,也可采用瞬态结构分析。Workbench单向流-固耦合分析流程,如下图所示。ANSYSWorkbench单向流-固耦合仿真分析流程双向流-固耦合:每一时刻都同时进行流体计算传递压力到固体表面,固体计算发送节点位移到流体界面。固体计算通常采用瞬态结构分析。Workbench双向流-固耦合分析流程,如下图所示。ANSYSWorkbench双向流-固耦合仿真分析流程流-热耦合仿真流-热耦合是研究温度场与流体场之间的相互作用,在工程实际中非常普遍,例如预测氧化、冷隔、浇不足等铸造缺陷。流-热耦合需要进行多次迭代计算,需要考虑多种因素,如流体的物理性质、温度场的影响等。ANSYSWorkbench可以完成单向和双向流-热耦合仿真,用户可以利用ICEMCFD划分流体场网格,使用Fluent模块求解流体场,从而完成流-热耦合计算。流-热耦合计算中,主要基于对流换热计算公式进行数据交换。ANSYSWorkbench双向流-热耦合仿真分析流程流-热-固耦合仿真流-热-固耦合是研究流体场、温度场、结构场之间的相互耦合作用,例如航空领域的尾喷管气动加热问题、航空发动机一体隔热结构的散热问题,航天领域飞行器的热气弹问题,汽车领域的排气管流-热-固耦合问题等。三通管流-热-固耦合仿真ANSYSWorkbench使用Fluent、Steady-StateThermal、StaticStructural实现流-热-固耦合分析,流体通过耦合面传递流体力至结构并传递温度至热场,热场通过体耦合传递温度至结构,数据流如下图所示。ANSYSWorkbench双向流-热-固耦合仿真分析流程电-磁-热-固耦合仿真电-磁-热-固耦合仿真是研究电场、磁场、温度场、结构场相互耦合作用,可以在产品设计阶段就能减少产品问题,使产品更加小型化、更安全可靠高效,大幅降低变压器、电机、电磁炉等机电原型机的测试和生产成本。5G数字电路电-磁耦合仿真ANSYSMaxwell是工业界领先的电磁仿真软件,已被集成到先进的仿真平台Workbench中,可以实现电机电磁、振动和噪声的耦合分析。也可以与其他软件进行耦合分析,如Maxwell模块与FLUENT软件之间的电磁热流耦合分析。ANSYSWorkbench电-磁-热耦合仿真分析流程刚-柔耦合仿真在实际工程问题中,刚形体与柔性体同时存在,其中柔性体很容易发生疲劳破坏,其变形也会影响机械系统精度,因此需要考虑结构的变形效果,分析柔性体的结构力学响应,即进行刚-柔耦合仿真分析。ANSYSWorkbench刚-柔耦合分析项目流程如下图所示,主要分为两步:首先进行刚体动力学分析,然后进行柔性体力学分析。ANSYSWorkbench刚-柔耦合仿真分析流程光-机-热耦合仿真在精密光学仪器中,由于机械载荷、温度变化、装配偏差等因素,会引起光学镜面几何变形和光学材料性能变化,难以满足镜片面形和位置精度要求。因此,需要将光学、结构力学、热力学等多学科集成耦合,形成光-机-热集成分析方法,通过仿真驱动设计实现光机方案快速迭代。太空望远镜光-机-热耦合仿真AnsysMechanical结构分析对镜头的装配和温度工况进行模拟分析,得到镜头变形数据结果,再通过Zemax的STAR模型进行耦合,将镜头的结构分析数据导入到镜头设计软件中,从而进行镜头设计和优化。ANSYSWorkbench光-机-热耦合仿真分析流程多场耦合分析是研究多种物理场相互作用的分析方法,涉及固体力学、流体力学、热力学、电磁学、热学等多学科知识。作为新时代工程师,学好自身专业的同时,也要不断拓展其它专业知识,更好实现产品交叉融合。来源:一起CAE吧

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈