本文研究了Haynes 282合金在高温长期时效处理和持久试验条件下的组织稳定性。通过Thermal-Calc软件和实验分析,发现该合金在800℃下长期时效处理后会析出TCP相,且高温时效或持久试验后会析出μ相。随着时效时间的延长和温度的升高,μ相的析出量和尺寸增加,表明合金在高温下存在组织不稳定性,这可能影响其高温力学性能。研究结果对于理解该高温合金材料的应用可行性具有重要意义。
正文
1 试验材料和方法
采用VIM+ESR工艺制备本试验所用Haynes 282合金,经过管坯锻制、热挤压和冷轧等工艺获得直径为38.0 mm、壁厚为8.8 mm的管材,合金的初始热处理状态为固溶态,固溶温度为1121~1149 ℃,合金经快速冷却后,在802 ℃下保温8 h后空冷。
金相样品采用电解抛光和电解侵蚀。电解抛光液中H2SO4体积分数为20%,CH3O体积分数为80%,电压约为15 V,抛光时间约为15 s;电解侵蚀液中H3PO4体积为170 mL,H2SO4体积为10 mL,CrO3质量为15 g,电压约为5 V,侵蚀时间约5 s。金相样品经电解抛光和电解侵蚀后基体γ相被侵蚀,析出相会凸起,结合VEGA 3 XMU型扫描电镜和能谱仪(EDS)进行组织观察和成分分析。对某些特定的析出相进行透射电镜(TEM)分析和电子衍射鉴定。利用TEM观察的薄膜试样采用双喷电解抛光减薄制备,双喷液中HClO4体积分数为10%,正丁醇体积分数为65%,乙醇体积分数为25%。
采用盐酸+甲醇电解液在0 ℃左右电解萃取得到碳化物和TCP相,收集析出相的粉末并进行X射线衍射鉴定。对Haynes 282合金中析出的TCP相进行定量分析,并统计TCP相面积占观测面积的比例(简称面积占比)。
2 热力学计算
采用Thermal-Calc (TCW2)软件结合Ni基数据库(2003P)对Haynes 282合金开展相图计算。图1为Haynes 282合金的平衡凝固组织相图。从图1可以看出,Haynes 282合金平衡凝固时存在γ相、γ′相、MC相、M6C相和M23C6相,且在一定温度范围内会析出σ相、α-Cr相和μ相。根据图1推测,在1 100 ℃左右Haynes 282合金中开始析出γ′相,在830 ℃析出σ相,在低于800 ℃后析出μ相,在800~1 200 ℃会有少量的M6C相析出。
图1 Haynes 282合金的平衡凝固组织相图
Fig.1 The equilibrium solidification phase diagram of Haynes 282 alloy
为分析Haynes 282合金平衡凝固过程中各析出相的析出特征,对其化学成分进行模拟计算,如表1所示。同时,对合金中析出相的温度范围和主要析出相成分的质量分数进行计算,见表2和表3。从表2可以看出,Haynes 282合金中可能会出现M6C相和μ相。Jiang等指出Mo元素会显著促进μ相的形成,认为μ相的化学分子式是A3B2或A7B6。另外,由于Haynes 282合金中Mo元素质量分数高达8.55%,该元素也会促进M6C碳化物的形成。
表1 Haynes 282合金的化学成分
Tab.1 Chemical composition of Haynes 282 alloy %
图2为Haynes 282合金等温时效组织转变曲线(TTT曲线)的计算结果。Haynes 282合金中出现了γ′相、M23C6相和M6C相,在高温长期时效处理后也会形成σ相和μ相。在800 ℃下,M23C6相和M6C相分别在0.3 h和0.8 h后析出,经过511 h时效后会析出σ相和TCP型μ相。重型燃气轮机燃烧室使用的高温合金材料设计寿命大于50 000 h,通过TTT曲线可以预测Haynes 282合金在长期使用过程中可能会析出TCP相,表明该合金的组织具有不稳定性,这会影响其高温力学性能。因此,有必要验证Haynes 282合金在高温长期时效处理和持久试验条件下的组织稳定性,以阐明该种高温合金材料应用的可行性。
图2 Haynes 282合金的TTT曲线
Fig.2 TTT curves of Haynes 282 alloy
3 Haynes 282合金的高温组织稳定性
图3和图4分别给出了Haynes 282合金在800 ℃下经过长期时效处理后的组织特征以及MC碳化物的分解特征。由图3和图4可知,随着时效时间的延长,MC碳化物的分解逐渐加剧;时效时间为1 000 h时,MC碳化物初步分解,从MC碳化物的原位开始向晶内延伸出针状相,在晶粒内存在少量尺寸较小的针状相,此外在Haynes 282合金凝固结晶时析出的一次MC碳化物也出现分解;当时效时间达到3 000 h时,由MC碳化物分解产生的针状相尺寸增大,说明在800 ℃下经长期时效处理后针状相会逐渐长大;当时效时间达到5 000 h时,从MC碳化物分解出的针状相数量增多,且变粗、变长,逐渐向四周呈现放射状分布;当时效时间达到10 000 h时,晶粒内部出现大量尺寸很大的针状相,且由MC碳化物分解的细长针状相逐渐转变为纺锤形的短棒状相。整体来看,Haynes 282合金在800 ℃下时效时间越长,针状相的数量越多,该现象充分说明了其组织的不稳定性。
图3 Haynes 282合金在800 ℃下经过长期时效处理后的组织特征
Fig.3 Microstructure characteristics of Haynes 282 alloy during long-term aging at 800 ℃
3.1.1 Haynes 282合金等温时效析出相的鉴定
为了确定析出针状相的类型,对800 ℃下经过5 000 h长期时效处理的试样进行电解萃取和X射线衍射相鉴定。Haynes 282合金中的析出相特征见表4,X射线衍射图谱见图5。Haynes 282合金中主要存在M23C6相,以及部分M6C相和TiC相,3类碳化物均属于面心立方结构。特别要指出的是,Haynes 282合金中存在TCP型μ相,属于三角晶系。
图4 Haynes 282合金在800 ℃下经过长期时效处理后MC碳化物的分解特征
Fig.4 Decomposition characteristics of MC carbide in Haynes 282 alloy during long-term aging at 800 ℃
表4 Haynes 282合金中的析出相特征
Tab.4 Characteristics of precipitated phases in Haynes 282 alloy
图5 Haynes 282合金的X射线衍射图谱
Fig.5 X-ray diffraction spectrum of Haynes 282 alloy
从图5可以看出,Haynes 282合金在800 ℃下经过5 000 h长期时效处理后,M23C6相和μ相的强度最强,而M6C相和TiC相的强度很弱。这说明在Haynes 282合金中析出相M23C6相和μ相的含量最多,M6C相和TiC相的含量最少。
结合图3~图5可以看出,M23C6相主要分布在晶界,TiC相随机分布在晶内,部分分布在晶界,而Haynes 282合金显微组织中存在的相当数量的针状相为TCP型μ相。
根据综合相分析方法,确认Haynes 282合金在800 ℃下经过长期时效处理后组织中出现的大量针状相为TCP型μ相。显然,μ相对合金的组织和力学性能有害。
3.1.2 Haynes 282合金等温时效析出相统计
图6给出了对Haynes 282合金在不同温度下进行长期时效处理后的组织特征,图中各数值表示面积占比。从图6可以看出,在700 ℃下经过1 000 h长期时效处理后没有观察到针状μ相析出,但在700 ℃下经过5 000 h长期时效处理后出现了少量的针状μ相。整体来看,在700~800 ℃下经过长期时效处理后Haynes 282合金中析出针状μ相,且温度升高和时效时间延长加剧了针状μ相的析出。
图6 Haynes 282合金在不同温度下经过长期时效处理后的组织特征
Fig.6 Microstructure characteristics of Haynes 282 alloy after long-term aging at different temperatures
为了分析Haynes 282合金经过长期时效处理后针状μ相的尺寸、数量和分布特征,对其尺寸和面积占比进行统计。图7给出了Haynes 282合金经长期时效处理后针状μ相面积占比随时效时间的变化。针状μ相的面积占比随时效时间的延长呈逐渐增加的趋势;同时,在700~800 ℃温度范围内,随着温度的升高,针状μ相的面积占比也逐渐增大。这说明针状μ相的尺寸和数量同时受到温度和时效时间的影响。温度升高,针状μ相的数量和尺寸明显增大;时效时间延长,针状μ相也会长大。由图7可知,在800 ℃下时效时间从5 000 h延长至10 000 h时,针状μ相的面积占比由2%~2.5%快速增至4.5%~5%。
图7 针状μ相的面积占比随时效时间的变化
Fig.7 Variation of area proportion of needle-like μ phase with aging time
3.1.3 Haynes 282合金的组织特征
图8给出了在持久试验条件为800 ℃/130 MPa、持久断裂时间为6 752 h时Haynes 282合金析出相的组织特征。从图8(a)可以看出,在三叉晶界处具有明显的蠕变孔洞,在晶界上也有明显的裂纹。如图8(b)所示,在晶粒内部出现MC碳化物的分解,且可以观察到有一定数量的针状μ相析出。
图8 Haynes 282合金析出相的组织特征
Fig.8 Microstructure characteristics of precipitated phase in Haynes 282 alloy
为进一步分析Haynes 282合金经持久试验后μ相的析出特征,对在800 ℃/130 MPa条件下持久试验达到6 752 h的试样进行TEM+EDS分析,同时对MC碳化物的分解特征进行扫描电镜(SEM)观测和EDS分析。由图8可以看出, Haynes 282合金中析出的μ相主要有3种,分别为晶粒内部长条状μ相、小块状μ相和晶界针状μ相,其形态和位置不同。
(1) 长条状μ相
图9给出了长条状μ相的TEM分析结果。这类μ相长度约为10~20 μm。根据EDS分析结果,长条状μ相中Cr+Mo原子数量占比(简称原子百分数)为59.90%,Ni+Co原子百分数为40.11%,而μ相中Cr+Mo与Ni+Co原子百分数之比为60∶40,符合A3B2型μ相的成分特征,即为(Cr,Mo)3(Ni,Co)2。分别对衍射斑点进行测算,并标定μ相,其晶格常数为a=b=4.720 Å,c=25.394 Å,c/a=5.38。
长条状μ相的X射线能谱法(EDX)线扫描结果见图10。从图10可以看出,Haynes 282合金中长条状μ相富含Mo、Cr和Co元素,且在长条状μ相两侧出现Mo、Cr和Co元素的贫化现象。根据EDX线扫描结果,可以将长条状μ相分为A、B和C 3个区域。其中,A区属于基体γ相,C区属于μ相,而B区极为特殊,其成分接近γ′相。长条状μ相两侧附着有大量的γ′相,这是由于长条状μ相在基体中生长时,μ相中的Al、Ti和Ni元素会向两侧扩散,基体中的Mo和Co元素会通过扩散向该处汇集,因此在γ相与μ相间会存在一个过渡区,该过渡区的成分与γ′相相似。
图10 长条状μ相的EDX线扫描结果
Fig.10 EDX line scan results of long strip μ phase
(2) 小块状μ相
图11给出了小块状μ相的TEM分析结果。小块状μ相的成分见表5。从图11可以看出,小块状μ相位于晶粒内部,其尺寸较小。小块状μ相的Cr+Mo原子百分数为59.36%,Ni+Co原子百分数为39.71%,符合A3B2型μ相的成分特征,即为(Cr,Mo)3(Ni,Co)2。小块状μ相中也含有极少量的Fe元素,该结果与冶军的研究结果一致。通过对图11(c)中圆圈区域进行电子衍射分析,标定衍射斑点得出Haynes 282合金2个衍射斑点的晶面指数分别为和对应的晶带轴为[0001],属于六方结构。
表5 小块状μ相的成分
Tab.5 Composition of small block μ phase %
图12给出了晶界针状μ相的TEM分析结果。从图12可以看出,在晶界位置紧密排列着多个针状μ相。晶界针状μ相的成分见表6。
Tab.6 Composition of needle-like μ phase at the grain boundary %
4 结 论