复材资讯·美国能源部橡树岭国家实验室开发动态交联CFRP,碳纤维有望实现完全回收
本文摘要:(由ai生成)
美国能源部橡树岭国家实验室开发出闭环技术,可回收碳纤维增强聚合物(CFRP)。该技术使用动态化学基团和关键物质频哪醇,使CFRP可无损性能回收利用,同时提高了材料的韧性,其强度几乎是传统材料的两倍。该技术有望降低成本、减少碳足迹,并广泛应用于风力涡轮机、电动汽车、体育用品等领域。这一创新解决了传统CFRP难以回收的问题,促进了环保和资源的可持续利用。
近日,美国能源部橡树岭国家实验室(ORNL)设计出闭环路径,可用于合成极其坚韧的碳纤维增强聚合物(CFRP),并随后回收其所有原材料。
CFRP作为一种轻质、坚固且坚韧的复合材料,可用于减轻汽车、飞机和航天器的重量并提高燃油效率。然而,传统的CFRP很难回收,大多数都是一次性材料,因此碳足迹显著。相比之下,ORNL的闭环技术(发表在期刊《Cell Reports Physical Science》上),可以应对上述挑战。 传统的热固性材料是永久交联的。热固性环氧树脂等传统聚合物通常用于永久粘合金属、碳、混凝土、玻璃、陶瓷和塑料等材料,形成复合材料等多组分材料,一旦合成、固化、成型并定型,就无法再加工。而 ORNL 的系统则是在聚合物基体及其嵌入的碳纤维中添加动态化学基团。具体来说,当一种名为频哪醇(pinacol)的特殊醇类取代交联剂的共价键时,材料的成分就可以释放出来,进行回收利用。聚合物基体和碳纤维可以经过多次再加工,而不会丧失机械性能,如强度和韧性。 据实验室人员介绍,由于存在动态键,纤维和聚合物的界面粘附力非常强。界面通过共价作用将材料锁在一起,并根据需要利用热量或化学作用将其解锁,功能化纤维与这种聚合物之间存在动态可交换交联。由于界面特性,复合结构非常坚固。这使得材料非常非常坚固。 将聚合物、功能化碳纤维和交联剂混合并固化。加入一种醇(pinacol)后,就可以回收这些成分 研究人员从大自然中汲取灵感,利用动态界面创造出坚固耐用的材料。珍珠质是海洋贻贝和其他软体动物贝壳内的五彩珍珠母贝,具有超强的韧性:可以变形而不破裂。此外,海洋贻贝会强力粘附在表面上,但在必要时会耗散能量以释放出来。研究人员的目标是优化碳纤维和聚合物基体之间的界面化学性质,以增强界面粘附力,提高 CFRP 的韧性。"我们的复合材料强度几乎是传统环氧树脂复合材料的两倍,"拉赫曼说,"其他机械性能也非常出色。” 拉伸强度,即材料在拉伸时可承受的应力,在同类纤维增强复合材料中是最高的。它的拉伸强度为 731MPa--比不锈钢还强,比传统的环氧树脂基 CFRP 汽车复合材料还强。 在 ORNL 的材料中,纤维界面和聚合物之间的动态共价键与没有动态键的聚合物相比,界面粘附力提高了 43%。 动态共价键实现了闭环回收。在传统的基体材料中,碳纤维很难与聚合物分离。ORNL 的化学方法可在功能位点上夹住纤维,从而使纤维与聚合物分离以便重复使用成为可能。 Karunarathna Koralalage、Rahman 和 Saito 在田纳西大学诺克斯维尔分校布雷德森跨学科研究和研究生教育中心研究生 Natasha Ghezawi 的协助下,对一种名为 S-Bpin 的商品聚合物进行了改性。他们创造出了可循环利用的苯乙烯-乙烯-丁烯-苯乙烯共聚物,这种共聚物含有硼酸酯基团,可与交联剂和纤维共价键合,生成坚韧的 CFRP。 “科学家们发现,动态交联的程度非常重要。"拉赫曼说,"我们发现 5%的交联比 50%的交联效果更好。如果我们增加交联剂的用量,聚合物就会开始变脆。这是因为我们的交联剂有三个像手一样的大块结构,能够产生更多的连接,降低聚合物的柔韧性。” 接下来,研究团队希望对玻璃纤维复合材料进行类似的研究,玻璃纤维复合材料可以在保持高性能的同时降低航空航天、汽车、海洋、体育、建筑和工程应用的成本和碳足迹。他们还希望降低新技术的成本,以拓展更多应用领域,优化商业前景,特别是风力涡轮机、电动汽车、航空航天材料甚至体育用品。来源:PolymerTech
来源:碳纤维生产技术