首页/文章/ 详情

详解三极管的工作原理(图文+案例,让你明明白白)

8月前浏览471
本文摘要:(由ai生成)

本文全面介绍了三极管,一种具有放大功能的半导体器件,由基极、集电极和发射极三层半导体构成。三极管可按结构、功率等进行分类,有其特殊类型。文章详细阐述了PNP和NPN型三极管的工作原理及其三种工作状态,还探讨了三极管的三种工作类型。除放大电路外,三极管还可用作开关,并能与其他元件组合实现多种功能,如振荡、扩流等,显示出广泛的模拟和电路构建能力。

第2146期


今天给大家讲一下三极管。

一、什么是三极管?

三极管全称是“晶体三极管”,也被称作“晶体管”,是一种具有放大功能的半导体器件。通常指本征半导体三极管,即BJT管。

典型的三极管由三层半导体材料,有助于连接到外部电路并承载电流的端子组成。施加到晶体管的任何一对端子的电压或电流控制通过另一对端子的电流。

三极管实物图

三极管有哪三极?

  • 基极:用于激活晶体管。(名字的来源,最早的点接触晶体管有两个点接触放置在基材上,而这种基材形成了底座连接。)

  • 集电极:三极管的正极。(因为收集电荷载体)

  • 发射极:三极管的负极。(因为发射电荷载流子)

1、三极管的分类

三极管的应用十分广泛,种类繁多,分类方式也多种多样。

2、根据结构

  • NPN型三极管

  • PNP型三极管

3、根据功率

  • 小功率三极管

  • 中功率三极管

  • 大功率三极管

4、根据工作频率

  • 低频三极管

  • 高频三极管

5、根据封装形式

  • 金属封装型

  • 塑料封装型

6、根据PN结材料

  • 锗三极管

  • 硅三极管

  • 除此之外,还有一些专用或特殊三极管

二、三极管的工作原理

这里主要讲一下PNP和NPN。

1、PNP

PNP是一种BJT,其中一种n型材料被引入或放置在两种p型材料之间。在这样的配置中,设备将控制电流的流动。PNP晶体管由2个串联的晶体二极管组成。二极管的右侧和左侧分别称为集电极-基极二极管和发射极-基极二极管。

2、NPN

NPN中有一种 p 型材料存在于两种 n 型材料之间。NPN晶体管基本上用于将弱信号放大为强信号。在 NPN 晶体管中,电子从发射极区移动到集电极区,从而在晶体管中形成电流。这种晶体管在电路中被广泛使用。

PNP和NPN 符号图

三、三极管的 3 种工作状态

分别是截止状态放大状态饱和状态。接下来分享在其他公 众 号看到的一种通俗易懂的讲 法:

1、截止状态

三极管的截止状态,这应该是比较好理解的,当三极管的发射结反偏,集电结反偏时,三极管就会进入截止状态。

这就相当于一个关紧了的水龙头,水龙头里的水是流不出来的。

三极管工作原理-截止状态

截止状态下,三极管各电极的电流几乎为0,集电极和发射极互不相通。

2、放大状态

当三极管发射结正偏,集电结反偏,三极管就会进入放大状态。

在放大状态下,三极管就相当于是一个受控制的水龙头,水龙头流出水流的大小受开关(基极)控制,开关拧大一点,流出的水就会大一点。

也就是放大状态下,基极的电流大一点,集电极的电流也会跟着变大!并且ic与ib存在一定比例关系,ic = β ib,β是直流电流放大系数,表示三极管放大能力的大小。

三极管工作原理-放大状态

3、饱和状态

当三极管发射结正偏,集电结正偏时,三极管工作在饱和状态。

在饱和状态下,三极管集电极电流ic的大小已经不受基极电流ib的控制,ic与ib不再成比例关系。

饱和状态下的三极管基极电流ib变大时,集电极电流ic也不会变大了,这就相当于水龙头的开关已经开得比较大了,开关再开大时,流出的水流也不会再变大了。

饱和状态

四、三极管的功能应用

1、三极管放大电路

三极管是一种电流放大器件,可制成交流或直流信号放大器,由基极输入一个很小的电流从而控制集电极输出很大的电流,如下图所示:

《电子元器件从入门到精通》

《电子元器件从入门到精通》

三极管基极(b)电流最小,且远小于另两个引脚的电流;发射极(e)电流最大(等于集电极电流和基极电流之和);集电极(c)电流 与基极(b)电流之比即为三极管的放大倍数。

三极管具有放大功能的基本条件是保证基极和发射极之间加正向电压(发射结正偏),基极与集电极之间加反向电压(集电结反偏)。基极相对于发射极为正极性电压,基极相对于集电极为负极性电压。

2、三极管的 3 种工作类型

这里主要有三种类型:共基极 (CB)、共集电极 (CC) 和共发射极 (CE)

1)三极管共基极型(CB)

在共基极 (CB) 配置中,晶体管的基极端子在输入和输出端子之间是公共的。

三极管共基极型(CB)

2)三极管共集电极型(CC)

在公共集电极 (CC) 配置中,集电极端子在输入和输出端子之间是公共的。

三极管共集电极型(CC)

3)三极管共射极型(CE)

在公共发射极 (CE) 配置中,发射极端子在输入和输出端子之间是公共的。

三极管共射极型(CE)

3、三极管的开关功能

三极管的集电极电流在一定范围内随基极电流呈线性变化,这就是放大特性。当基极电流高过此范围时,三极管集电极电流会达到饱和值 (导通),基极电流低于此范围时,三极管会进入截止状态(断路), 这种导通或截止的特性在电路中还可起到开关作用,如下图所示:

三极管的开关功能

4、三极管的其他功能作用

  • 三极管配合其他元件可以构成振荡器

  • 把一只小功率可控硅和一只大功率三极管组合,就可得到一只大功率可控硅,主要作用是扩流

  • 两只三极管串联可直接代换调光台灯中的双向触发二极管,主要是代换功能

  • 用三极管构成的电路可以模拟其它元器件

  • 电阻分压器构成恒压源电路,晶体管用作恒压管

  • 晶体管反相器


来源:电磁兼容之家
电路电磁兼容半导体电子材料控制
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-04-20
最近编辑:8月前
电磁兼容之家
了解更多电磁兼容相关知识和资讯...
获赞 25粉丝 144文章 2064课程 0
点赞
收藏
作者推荐

电源滤波器在使用过程中的常见误区

第2123期滤波器是一种对波进行过滤的器件,在生活中一般用在收音机、电视机、音响等各种电器,在工业和军事上还有更广泛的用途。对于滤波器大家是很陌生的,但我们做些了解也是有好处的。今天小goo要给大家介绍的是电源滤波器的损坏原因,感兴趣的话一起来看看吧。电源滤波器概述电源滤波器的作用就是减少电源干扰。电源干扰可以分为普通模式和共通模式。普通模式是两组输入电源线之间的杂讯,这种杂讯通常是在关机和开机时产生。而共通模式是指因为器材接地不良,又或是广播无线电及冰箱马达电磁、日光节能灯镇流器、洗衣机、风扇可控硅调速等引发的干扰。实验测试过程中,我们常遇到这样的情况:虽然设计工程师在设备电源线上接了电源滤波器,但是该设备还是不能通过"传导骚扰电压发射"测试,工程师怀疑滤波器的滤波效果不好,不断更换滤波器,仍不能得到理想的效果。分析设备超标的原因,不外乎以下两个方面:1、设备产生的骚扰太强2、设备的滤波不足对于第一种情况,我们可以通过在骚扰源处采取措施,降低骚扰的强度,或者增加电源滤波器的阶数,提高滤波器对骚扰的抑制能力来解决。对于第二种情况,除了滤波器自身性能不好以外,滤波器的安装方式对它的性能影响也很大。这一点往往是被设计工程师忽视的。在很多测试中,我们通过更改滤波器的安装方式就能使设备顺利通过测试。下面是一些常见的滤波器错误安装方式对滤波器性能影响的实例。输入线太长许多设备的电源线进入机箱后,经过很长的导线才接到滤波器的输入端。例如,电源线从机箱后面板输入,走行到前面板的电源开关,又回到后面板接到滤波器。或者滤波器的安装位置距离电源线入口较远,造成引线太长(如图1所示)。由于电源入口到滤波器输入端的引线过长,设备产生的电磁骚扰通过电容性或电感性耦合,重新耦合到电源线上,而且骚扰信号的频率越高,耦合越强,造成实验失败。图1平行走线有的工程师为了使机箱内部的走线美观,常常把线缆捆扎在一起,这对电源线是不允许的。如果把电源滤波器的输入输出线平行走线或捆扎在一起,由于平行传输线之间存在分布电容,这种走线方式相当于在滤波器的输入输出线之间并联了一个电容,为骚扰信号提供了一条绕过滤波器的路径,导致滤波器的性能大幅下降,频率很高时甚至失效(如图2所示)。等效电容的大小与导线距离成反比,与平行走线的长度成正比。等效电容越大,对滤波器性能的影响越大。图2接地和壳体这种情况也比较普遍。许多工程师安装滤波器时,滤波器的壳体和机箱之间搭接不良(有绝缘漆);同时,使用的接地线较长,这将导致滤波器的高频特性变坏,降低滤波性能。由于接地线较长,在高频时导线的分布电感不能忽视。如果滤波器搭接良好,干扰信号可以通过壳体直接接地。如果滤波器的壳体和机箱之间搭接不良,相当于滤波器的壳体(地)与机箱之间存在一个分布电容,这将导致滤波器高频时接地阻抗较大,尤其在分布电感和分布电容谐振的频率附近,接地阻抗趋于无穷。图3滤波器接地不良对滤波器性能的影响:由于滤波器接地不良,接地阻抗较大,有一部分骚扰信号能通过滤波器(如图3所示)。为了解决搭接不良,应把机箱上的绝缘漆刮掉,保证滤波器壳体和机箱有良好的电气连接。在这种安装方式下,滤波器的壳体和机壳接触良好,可堵住电源线在机箱上的开口,提高机箱的屏蔽性能;另外,滤波器的输入输出线之间有机箱屏蔽相隔离,消除了输入输出线之间的骚扰耦合,保证滤波器的滤波性能。来源:电磁兼容之家

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈