本文摘要(由AI生成):在上述问题中,我们可以看到涉及到结构优化和分析的多个方面,包括集中力载荷与强制位移的区别、初始材料比的设定、优化类型的联合使用、拓扑优化与分析结果的差异、优化迭代历程的跟踪、屈曲约束条件的设置、刚体模态的输出以及形貌优化中响应的选择等。下面我将对这些问题进行详细的解答和分析。
问题21:使用集中力载荷(force)和强制位移(prescibeddisplacement)有什么区别?
解答:为了增加结构的刚度,可以使用的方法有:
(1)在给定集中力载荷的情况下,最小化柔度。
(2)在强制位移的情况下,最大化柔度。柔度的定义为:Compliance ~ Force • Displacement。
当使用强制位移方法时,其反作用力必须增加以增加结构的刚度,则意味着柔度必须最大化。当使用集中力方法时,刚度越好的结构意味着其变形越小,为了达到这一目的,则意味着柔度必须最小化。
问题22:在 OptiStruct进行第一步迭代(iteration0)的时候,其初始材料比(materialfraction)是多少?
解答:如果优化问题设置的目标函数是最小化体积或者最小化质量,OptiStruct在默认情况下,会将初始材料比设置为 0.9。如果在优化问题的设置中增加了质量约束或者体积约束,那么OptiStruct 在初始迭代时会将材料比设置为质量/体积约束的边界值。如果在优化问题中,既没有设置质量/体积响应作为目标函数,也没有将质量/体积响应作为设计约束条件,那么初始材料比将被默认设定为0.6。
问题23:在 OptiStruct进行第一步迭代(iteration 0)的时候,如何将初始材料比设置为 1.0?
解答:用户可以通过 DOPTPRM卡片中的 MATINT 参数,将第一步迭代时的初始材料比设置为 1.0。
问题24:我是否可以将多种优化类型联合使用?例如尺寸优化+形状优化,或者尺寸优化+形貌优化。
解答:完全可以。在 OptiStruct中,任何类型的优化都是可以被联合使用的。但是我们建议用户在实际运用时,在联合使用各类优化迭代方法之前,首先对待优化的模型分别单独使用各种优化方式,并观察其结果。这可以帮助您更好的理解各类优化类型及其结果对模型最终性能的影响,并帮助您做出更好的决策,选择哪些优化方式,并如何联合使用这些优化方式。如果您希望联合使用各种优化手段,那么只需要在 HyperMesh 前处理界面中,进入 Optimization菜单中,分别独立的选择各种优化手段(拓扑,尺寸,形貌……),完成各自的设计变量,设计约束定义。在递交求解的过程中,OptiStruct 会自动将这些优化手段联合起来,并开始进行优化迭代。在 OptiStruct 在线帮助文档中,有若干联合使用各类优化方法的例子,可以帮助您更好的了解这一工具。
问题25:在进行拓扑优化时,为什么使用 OptiStruct进行优化求解时,在初始迭代(iteration0)时得到的结果和仅仅使用 ANALYSIS功能时得到的结果有一定的差异?
解答:二者的结果都是正确的。造成这一差异的主要原因是由设计空间材料密度(designspace material density,材料比,又称material fraction。注意:该概念需要与描述材料性能中的材料物理密度相区别)设置与仅仅进行 ANALYSIS 时的密度有差别的。在仅仅进行 ANALYSIS分析时,设计空间材料密度被强制设定为 1.0。而在拓扑优化的第一步迭代(iteration 0)时,设计空间材料密度则取决于优化问题的设置而有所不同(初始设计空间材料密度<1),除非用户在 DOPTPRM 卡片中,将 MATINIT参数设置为 1.0。因此,仅仅使用 ANALYSIS卡片和拓扑优化初始迭代(iteration 0)时得到的结果会有一定的差异。在拓扑优化中,如果将质量/体积响应作为目标函数,则初始设计空间材料密度将被置为 0.9;如果将质量/体积响应作为设计约束条件,那么初始设计空间材料密度将被置为设计约束条件的边界值;如果质量/体积响应既没有作为设计目标函数,也没有作为设计约束条件出现,那么初始设计空间材料密度将被置为0.6。
问题26:如何在 OptiStruct进行迭代时,跟踪监测优化迭代历程?
解答:在OptiStruct 正在进行优化迭代时,您可以通过 AltairHyperWorks 中强大的时间历程后处理工具 HyperGraph,打开优化工作目录下的迭代历史文件(iteration historyfile).hgdata,然后可以动态的监测包括目标函数,设计变量,设计约束条件等与优化迭代相关的各类信息。在 Edit Curves 中点击 Apply按钮,曲线将被实时更新。
问题 27:能否在拓扑优化或自由尺寸优化中,增加屈曲约束条件?
解答:在进行拓扑优化时设置屈曲约束条件有以下问题:
(1)与在拓扑优化中通过响应函数施加应力约束条件类似,在拓扑优化中,增加屈曲约束条件也是有其局限性的。在结构中的某些部分消失时,并不存在结构不稳定问题。当设计空间中的某些部分的密度突然发生改变,并逼近 0 时,容易导致拓扑奇异问题(singular topology)。基于梯度法的优化算法很难对这种问题做出有效的响应。例如,考察某一中间开口的平板结构,该结构是否出现失稳现象的关键是开口附近区域的材料分布状态。为了增强结构的稳定性,优化流程通常会尝试在开口区域附近增加材料,而不是去除材料以在开口区域获得更好的形态。这种现象阻止了优化引擎在该结构上寻找有意义的拓扑/形状。
(2)低密度材料(材料空间分布密度,非材料物理密度)对结构的刚度贡献是非常有限的,但是此类材料对结构稳定性却往往有非常大的影响,会对结构最大屈曲载荷有很显著的改变。很多时候,仅仅增加一小团块低密度材料,都会显著改变结构的屈曲性能。
(3)低密度材料区域的屈曲模态对整个结构而言是没有意义的。如何从优化结果中滤除这些屈曲模态,并用于结构稳定性分析是很有挑战性的综上所述,在优化问题中使用屈曲约束能且仅能使用在下面这种情况:即初始厚度不为0的壳单元结构。
问题28:如何输出模型的刚体模态(Rigid BodyModes)?
解答:为了输出刚体模态,只需要在 OptiStruct Input Deck 的I/O Options 中添加命令 OSDIAG,46,1即可。
问题29:在形貌优化中,是否可以使用体积/质量作为响应?
解答:理论上讲,体积/质量响应是可以应用在各类优化场合的。但是,在形貌优化中,最终的优化结果对体积/质量响应体现出及其的不敏感性。因此,我们建议客户尽量避免在形貌优化中使用体积/质量进行响应。
问题30:是否可以将源自不同工况(Loadstep)中的同种类型响应(Response)进行合并?
解答:可以。在OptiStruct 中,是通过联合使用 DEQATN 卡片,DRESP2 卡片以及DRESP1L 卡片实现的。其中,DEQATN 卡片用于合并一系列已有的响应。
如有任何技术问题,请发送email 至 support@altair.com.cn 或拨打400-6196-186 技术服务咨询!