首页/文章/ 详情

emc整改经常用到的器件:压敏电阻的参数学习

7月前浏览3248

本文摘要:(由ai生成)

压敏电阻器是一种用于电路过电压保护的电压非线性器件,具有电压范围宽、响应快等特点。它并联在电路中,能在电压急剧变化时迅速变为低阻抗,保护敏感元件。关键参数包括压敏电压、通流容量、结电容等,这些参数对于其在电路中的保护作用至关重要。选型和应用时需综合考虑各参数,以满足特定电路的保护需求。压敏电阻能有效限制过电压,确保电路的稳定运行。    


第2142期

压敏电阻器是一种电压非线性器件,它有对称而陡峭的击穿持性,当很高的瞬时过电压加到电路上时,压敏电阻的阻抗从接近于开路的状态急剧变化到高导通状态,把瞬时过电压抑制到安全电压水平,因而电路中的脆弱的元件受到保护。 

 

特点与用途: 

1、电压范围宽 

2、对过电压响应快 

3、耐脉冲电流能力强 

4、限制电压低 

5、电压温度系数小 

 

压敏电阻一般并联在电路中使用,当电阻两端的电压发生急剧变化时,电阻短路将电流保险丝熔断,起到保护作用。压敏电阻在电路中,常用于电源过压保护和稳压。

 


 

压敏电阻最重要的几个参数包括:压敏电压、通流容量、结电容、响应时间等。

 

压敏电压,是指外加电压高于某个电压后,压敏电阻器的电阻值迅速变小的一个拐点电压。但是这一电压测量不便,为了参数标准化的需要,国际电工委员会人为规定了两个测量压敏电压的直流参考电流为1mA和0.1mA,将在这一电流下测量所得电压人为规定为压敏电压。所以严格来讲,压敏电阻的手册上所标的压敏电压,已经不是压敏电阻的“压敏”电压。

 

通流容量,即最大峰值电流值(maximum peak current),即压敏电阻能够承受的波形为8/20uS(业界浪涌测试标准波形)的最大浪涌电流峰值。目前压敏电阻器的手册中通常给出两个能量容量的参数,一个是一次8/20uS浪涌冲击指标,一个是两次8/20uS浪涌冲击指标。

 

结电容,压敏电阻在导通前的电阻值非常大,可视为电介质,两个电极间存在着纳法级的电容,需要格外注意。也正是由于这个原因,压敏电阻器少用于高频电路和数字电路中。

 

压敏电阻的参数:


1、压敏电压UN(U1mA):通常以在压敏电阻上通过1mA直流电流时的电压来表示其是否导通的标志电压,这个电压就称为压敏电压UN。压敏电压也常用符号U1mA表示。压敏电压的误差范围一般是±10%。在试验和实际使用中,通常把压敏电压从正常值下降10%作为压敏电阻失效的判据

 

2、最大持续工作电压UC:指压敏电阻能长期承受的最大交流电压(有效值)Uac或最大直流电压Udc。一般Uac≈0.64U1mA,Udc≈0.83U1mA

 

3、最大箝位电压(限制电压)VC:最大箝位电压值是指给压敏电阻施加规定的8/20μs波冲击电流IX(A)时压敏电阻上呈现的电压。

 

4、漏电流Il:给压敏电阻施加最大直流电压Udc时流过的电流。测量漏电流时,通常给压敏电阻加上Udc=0.83U1mA的电压(有时也用0.75U1mA)。一般要求静态漏电流Il≤20μA(也有要求≤10μA的)。在实际使用中,更关心的不是静态漏电流值本身的大小,而是它的稳定性,即在冲击试验后或在高温条件下的变化率。在冲击试验后或在高温条件下其变化率不超过一倍,即认为是稳定的

 

5、冲击电流及重复冲击次数

 



来源:电磁兼容之家
非线性电源电路电磁兼容UM试验
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-04-21
最近编辑:7月前
电磁兼容之家
了解更多电磁兼容相关知识和资讯...
获赞 24粉丝 134文章 2035课程 0
点赞
收藏
作者推荐

PCB板时钟电路的电磁兼容设计

第2144期摘要:为了研究PCB集成电路板中时钟引起的电磁兼容问题,采用了仿真数值计算的方法,对时钟电路的电磁兼容设计时几种主要影响因素进行分析研究,确定了在PCB集成电路板设计时的时钟选择原则,以及时钟电路电磁兼容设计时的具体对象和内容,通过优化时钟设计的布局和布线来达到提高了PCB板电磁兼容设计。最后提出了可以有效切断PCB板上时钟干扰传播途径的几种措施,为工程技术人员提供一种解决相关问题的思路。关键词:PCB板;时钟信号;电磁兼容设计;仿真数值计算0 、引言众所周知,电磁兼容的3要素是电磁干扰源、被 干扰对象和传播电磁干扰的途径。PCB板上安装的时钟信号是一种引起PCB板电磁兼容问题的常见而又非常重要的辐射源。尽管时钟信号与其他数据信号、控制信号的逻辑电平一般都是一样的,翻转速率一般也没有太大的差别(大多数总线数据率与时钟信号翻转速率之比是1:1或者1:2),但由于时钟信号之所以更容易接近或者超过辐射发射的限值,主要原因是时钟信号是比较严格的周期信号,其在频域的能量主要集中在某些频点上,而数据信号是非周期信号,在频域上的能量也是比较分散的。因此,良好的时钟电路设计是PCB板的电磁兼容设计的关键。1 、时钟信号的频谱根据傅里叶展开可以得到,一个幅度为A,周期为T,脉冲宽度为t0,上升下降时间为tr的梯形时钟波形,其在n次谐波处的谐波分量为:式中C(n)为n次谐波处的谐波分量,单位:V或dBμV。从上面梯形时钟波形的傅里叶级数可以看出,影响时钟信号辐射强度的因素有时钟波形的幅度A、占空比(t0+tr)/T、时钟周期T(或者时钟频率f)、以及时钟波形的上升时间和下降时间。其中时钟信号的幅度与其产生的干扰直接线性相关,上升时间和下降时间对时钟高次谐波的影响至关重要。2 、时钟频谱的影响因素2.1 时钟上升时间对辐射的影响假设有2个时钟信号,幅度都为1 V,频率都为50 MHz,上升时间分别为2 ns和4ns。根据上面的傅里叶变换可以得到2个时钟信号的频谱分布,如图1所示。2.2 时钟频率对辐射的影响假设有2个时钟信号,幅度都为1 V,上升时间都为3.33 ns,重复频率为30 MHz和90 MHz,根据上面的傅里叶变换可以得到2个时钟信号的频谱分布,如图2和图3所示。2.3 时钟频谱的比较从图1可以看出,时钟谐波干扰尤其是高次谐波干扰的强度会随着上升和下降时间的降低而大大加强,2 ns上升时问的时钟的高次谐波比4 ns上升时间的对应谐波高出1~2倍。当上升下降时间相同时,周期T(或者基频f)的高低对时钟产生的高次谐波干扰的影响非常大,图2和图3分别是重复频率30MHz和90MHz,上升时间都为3.33 ns,幅度为1 V的梯形时钟波谐波干扰的大小。从图中可以看出,2种时钟在270 MHz的谐波干扰,90 MHz时钟在270 MHz(3次谐波)的谐波干扰比30MHz时钟在270 MHz(9次谐波)的谐波干扰高出15 dB左右;再比较90 MHz时钟在810MHz(9次谐波)的谐波干扰比30MHz时钟在810 MHz(27次谐波)的谐波干扰高出12 dB左右。因此在进行时钟系统设计时,在条件允许的情况下优先选用较低的时钟频率,比如在设计以太网的PHY芯片时既有采用125 MHz外部时钟的也有采用25 MHz外部时钟的,如果在其他技术条件允许应优先选用外部时钟为25 MHz的芯片,而且在各方面技术条件都满足的情况下优先选择上升和下降时间比较长的时钟或者时钟驱动电路。3 、时钟电路的电磁兼容设计在PCB板上实现时钟电路的电磁兼容设计主要从下面的几个方面来考虑:时钟晶振及其驱动器的电源处理;在PCB板上晶振及其驱动器的下面做局部的覆铜处理;时钟信号线的布线;时钟信号的端接和滤波等。3.1 电源设计当时钟电路的输出同时发生状态变换时,会对电源系统产生较大的瞬态电流,或灌电流,为了避免时钟芯片对单板电源系统的冲击,抑制单板电源的电磁干扰,就需要对时钟电源部分进行滤波和隔离设计。其设计原理图如图4所示。3.2 铺铜及布线设计晶体振荡器内部的电路会产生射频电流,如果晶体是金属外壳封装的,直流电源脚是直流电压参考和晶体内部射频电流回路参考的依据。不同的晶体(CMOS,TTL,ECL等)内部产生的射频电流对金属外壳的辐射大小不同,如果晶体金属外壳不与大的地平面连接,则不能将晶体金属外壳上大的瞬态电流泻放到地平面上。在晶振和时钟电路下面的局部地平面可以为晶振及相关电路内部产生的共模RF电流提供通路,从而使RF发射最小。为了承受流到局部地平面的共模RF电流,需要将局部地平面与系统中的其他地平面多点相连。即表层的局部地平面与系统内部地平面相连的过孔提供了到地的低阻抗。同时要注意的是要保证晶振底下地平面的完整性。使用完整地平面的信号的回流和信号本身方向相反,大小相等,能够很好的互相抵消,可以保证其良好的信号完整性和电磁兼容特性。但是,如果地平面不完整,回流路径中的电流与信号本身的电流不能相互抵消时(尽管这种电流不平衡有时候是不可避免的),就会产生一部分共模电流。产生的共模电压就会激励连接的外围结构,造成较大的辐射。如果布线从晶振下面穿过,特别是传输到连接器的布线,不仅破坏局部地平面的作用,而且还会将晶振产生的噪声通过容性耦合的方式耦合到穿过它下面的信号线,使这些信号线带有共模电压噪声,如果这些信号线通过连接器又延伸出PCB,就会将噪声带出。这是一种典型的共模辐射问题,原理如图5所示。3.3 端接设计时钟驱动芯片不用的输出管脚,比如:空载(开路),由于管脚开路全反射可能会引起时钟高次谐波的电磁干扰问题。在单板上加备用端接是解决这个问题的一种方案,但是备用端接采用电阻还是电容或者其他的端接方式时主要看空载所引起的电磁干扰的频点。如果采用电阻端接,就要考虑由此带来的功耗和驱动器的驱动电流;如果采用电容端接,可能会增加某些其他频点的电磁干扰,因此电容的大小时要优化电容值;如果不用管脚没有端接,但是已经通过试验证明了电磁干扰有足够的裕度,就没必要对未用管脚进行额外的备用端接处理。下面以3807数字时钟芯片为例,用仿真试验的结果来解释备用端接的作用。图6~图8表示了芯片不用的输出管脚时在开路、接50 Ω对地电阻、接75 Ω对地电阻、接20pF对地电容等方式时,驱动脚的电流、频谱分布及驱动电流所产生的电磁辐射。从上面的结果可以看出:(1)开路时的驱动电流最小,但有明显的窄脉宽振铃。就说明如果驱动器不用管脚空载(开路),驱动器的功耗最小。但是由此会带来一个不利的方面,那就是驱动电流的频谱中高频分量会变大,有可能导致高频的电磁干扰问题。这一点通过图7和图8中的开路驱动电流的频谱和电磁干扰曲线(蓝色曲线)也可以得到验证。(2)如果驱动器不用管脚用电阻端接,驱动电流会变大,但是驱动电流中的振铃现象明显减弱。采用小电阻端接,可以改善驱动电流的振铃,但是会增加驱动电流,功耗变大;如果采用大电阻端接,可以减小驱动电流,但是会使得驱动电流出现振铃现象(开路是电阻端接的一个极限)。通过仿真结果看,选择75欧姆端接电阻一方面可以使得驱动电流不会很大,另一方面驱动电流的振铃也不是很明显。(3)如果驱动器不用管脚采用电容端接,驱动电流的峰值变大,同时驱动电流脉冲的宽度也变大。这就表示驱动电流中的低频分量会明显变大,这就要注意低频段谐波的电磁干扰问题。图7和图8中对应电容端接的驱动电流的频谱曲线和电磁干扰曲线的低频分量明显变大也验证了这个问题。4、 结语本文主要就对如何降低时钟(干扰源)的干扰进行了分析和总结,因此可以得出以下如何切断时钟干扰的传播途径的结论。一是将时钟电路的基波和谐波能量最大程度的约束到指定的范围之内(这些能量传输需要的电路包围的面积越小越好);其二是有效建立时钟电路区域与输入输出接口线路的隔离。由此可以在时钟电路设计时可以通过布局和布线来达到优化电磁兼容设计的目的。【文章整理】电磁兼容之家【声明】文章信息来源于互联网,目的在于传递更多信息,不代表本订阅号赞同其观点和对其真实性负责。如转载内容涉及版权等问题,请立即与我们联系,我们将迅速采取适当措施。来源:电磁兼容之家

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈