接地技术的引入最初是为了防止电力或建筑物等遭雷击而采取的保护性措施。在日常生活中我们常见到在各种建筑物上都装有避雷针,其作用就是把雷电产生的雷击电流通过避雷针引入大地,从而起到保护建筑物的作用。
电路中的〝地〞,一般定义为电路或系统的零电平参考点。它不一定是实际的大地,它可以是设备的外壳或其它金属板、导线。顾名思义,“接地”就是把某点与电位参考点连接起来,使该点的电位为 0,也就是使该点与地之间的电压为 0。
目前人们都试图给“接地”一个明晰的定义;在众多定义中更认可亨利·奥特的定义:“接地是电流返回其源的低阻抗通道”,电路或系统与“地”之间建立低阻抗通路。
2.2、接地用途的分类
在此我们只针对电磁兼容方面,来谈谈接地的用途分类。根据电磁兼容接地目的不同,可以大致分为:屏蔽接地、滤波接地、基准电位稳定、信号回流路径。
为了防止电路工作产生的电场、磁场、电磁场向外辐射,或外部电场、磁场、电磁场在内部电路环路产生干扰,必须进行必要的隔离和屏蔽,这些隔离和屏蔽的金属必须接地。
滤波器中一般都包含信号线或电源线到地的旁路电容,当滤波器不接地时,这些电容就处于悬浮状态,起不到旁路作用。
对内部噪声和外部干扰的抑制需要或系统上的许多点与地相连,从而为干扰信号提供“最低阻抗”通道。
电路之间信号要正确传输,必须有一个公共电位参考点,这个公共电位参考点就是地,因此所有互相连接的电路必须接地
信号回流:
三、金属搭接介绍
3.1、什么是搭接
金属搭接是在两金属之间建立低阻抗通路,目的是为电流提供一均称的结构体以避免干扰回路。电子通信产品进行搭接设计的主要目的有:降低结构件上面的高频电位,防止产生地电流噪声,地环路耦合。防静电,防止结构件上积累静电电荷而造成危害。保护人身安全和设备安全。防止雷电放电的危害,也防止电源偶然接地时发生电击危险。提供故障电流的回流通路,提供信号电流单一、稳定的通路。
实验表明:金属表面镀锡能够提供很低的阻抗,这是因为锡不仅导电性很很好,而且较软。
3.1.2、金属搭接的主要形式:
金属搭接可以分为永久性的和非永久性的,永久性的搭接指在产品的寿命周期内不会脱开,非永久性搭接是指搭接部位由于检修、维护等原因需要分离,然后再重新搭接的情况,非永久性搭接可以通过螺丝钉、螺母、铆接、压接、或者其它方式实现。
永久性搭接的主要形式有熔焊、钎焊两种。熔焊是永久性搭接的理想方式、熔焊的高温可以蒸发掉氧化层等绝缘物质,形成连续的金属接触。熔焊形成的搭接具有良好的抗腐蚀性。
钎焊是另外一种较好的永久性搭接方式。钎焊是采用比母材熔化温度低的钎料,使其熔化将母材连接起来的焊接技术,钎焊分为硬钎焊与软钎焊。
非永久性搭接通常采用螺钉、铆接、压接来实现。很多场合不适合使用永久性搭接的方式,这时采用螺钉连接是最好的选择,不仅能够满足拆卸的需要,而且能够提供较低的搭接阻抗。螺钉的主要功能是为搭接面提供足够的压力,一般要大于 150kPa-200kPa 的压力,螺钉压紧的搭接面中,螺钉的主要功能是压紧搭接面,电流主要流过搭接面,因此对螺钉 的导电性没有要求。
铆接并不是理想的搭接手段,它既没有焊接的良好电气性能和抗腐蚀性,也没有螺钉紧固的灵活性,唯一的好处是适合于装配。电流流过铆接的搭接面时,铆钉与搭接体之间的缝隙对于搭接阻抗的影响很大。因此,安装铆钉的孔径要合适,使铆钉与搭接体之间具有紧密的接触,并且要避免一切绝缘物质。
保证搭接面具有良好的导电性,保证搭接面的清洗干净,保证搭接面可靠接触,保证搭接面有足够的紧固力,保证有足够的接触面积。防止搭接点产生电化学腐蚀。
在产品设计中需要注意搭接电阻(即直流搭接电阻)的应用价值,因为搭接电阻并不能直接反映搭接点的性能,而是搭接点的直流电阻和高频阻抗的综合性能决定搭接的性能。
由于高频阻抗测试存在困难,目前暂时只能提出直流搭接电阻的要求。另外,实际上也不能仅用搭接阻抗来衡量系统接地的性能,因为在实际的地系统中地线的感抗在高频电路中诱发的干扰将远远大于搭接电阻造成的危害,没有必要让搭接阻抗比连接体本身的固有阻抗还小得多。
形成低阻抗的连接并不是难事,难的是长期保持搭接点的低阻抗状态。影响金属搭接点阻抗的主要因素是腐蚀。腐蚀就是金属材料与环境之间相互作用,导致金属性质发生变化,其包括盐雾和工业污染物的环境腐蚀性尤为重要,暴露在这些环境中的搭接必须考虑进行保护,防止搭接阻抗变大。
金属在纯净状态下的电位序列,揭示了金属腐蚀的难易程度,处于序列中较高的位置金属更容易腐蚀。为了缓解腐蚀,可以使用保护漆将搭接点保护起来,也可以使用能与搭接金属兼容的第三种金属来减小电解腐蚀。
原文来自:风陵渡口话EMC