湍流方程推导的详细细节可参阅现有的任何一本有关湍流的教科书。本文仅提供基础的模型描述,以便将最佳实践的讨论与湍流模型联系起来。
由于 DNS 计算成本极为高昂,目前 CFD 的工程应用主要还是依赖于雷诺平均纳维-斯托克斯(Reynolds-Averaged Navier-Stokes,RANS)方程。这些方程是从精确的 NS 方程通过时间(或系综)平均得到的。
时间平均定义为:
换句话说,瞬时量
系综平均定义为:
系综平均法的优势在于它也可以应用于固有的非稳态流动(如带有运动部件的内燃机中的流动)。这两种形式的平均都会导致相同的方程和湍流模型,因此为了简单起见,使用了相同的上标。
当这些平均过程应用于Navier-Stokes方程时,可以得到RANS动量方程:
其中,
上式中的最后一项
上述 RANS 动量方程是在假定湍流不会导致明显的密度变化的情况下推导出来的--马赫数低于 M < 3 的流动通常是这种情况。需要注意的是,平均流的密度变化发生得更早,从 M~0.1 时就开始了。
湍流模拟中应用最广泛的假设是涡粘假设。该假设基于这样一个概念,即湍流应力可以使用类似于层流应力张量的方式表示:
右侧的最后一项表示湍流动能 k,用于解释雷诺应力张量对角线之和必须等于 2k 的要求。此项并不重要,可以避免/忽略(例如在没有 k 的单方程模型中)。
原来的问题是为雷诺应力张量的六个(由于张量的对称性)未知数提供封闭方程,现在则简化为提供合适的涡流粘度
其中,
与涡粘度假设相反,有一些方法旨在单独计算各个雷诺应力。为此,推导出了每个雷诺应力的精确传输方程(6 个方程)。然而,这些精确方程中又包含了需要建模的新的未知项(参见 [5])。对这些项的不同建模假设导致了各种各样的雷诺应力模型 (RSM)。RSM 精确方程如下
这些方程中的项为:
所有其他项都需要建立模型来封闭方程。此外,还需要关于湍流尺度的信息,例如在耗散项中。这些信息通常可以从额外的输运方程(如
(未完待续)