论文梗概:动力模态分解(Dynamic ModeDecomposition, DMD)是一种高效的流场降阶方法,广泛应用于复杂非定常流场关键流动结构的提取。但传统DMD在处理非稳定流场时凸显出两个局限性:无法准确描述非稳定模态的演化规律;可能忽漏某些初始值小但具有增长潜力的关键模态。为此,本文基于Moore-Penrose伪逆推导了改进的模态时间系数,同时定义了新的模态选取准则,形成了瞬时动力模态分解(DMD-TC)方法。采用典型解析函数、圆柱绕流和翼型动态失速非稳定流场对DMD-TC方法进行验证。结果表明:DMD-TC方法可以识别非稳定流场的关键模态,即使具有微小的初始幅值;同时可以准确描述非稳定模态的演变规律,包括指数型、对数型、线性、渐变间歇型、瞬变间歇型及其他复杂的演化规律。DMD-TC为非稳定流场分析提供了一种高效的新方法。
下面从模态时间系数改进、模态排序准则定义、新方法验证三个方面,介绍DMD-TC方法。
一种适用于非稳定流场的动力模态分解方法
徐连超1,2,刘正先1,2,李孝检1,2,*,赵明1,2,赵祎佳3
1 天津大学 机械工程学院,天津300350
2 天津大学 天津市现代工程力学实验室,天津300350
3 天津商业大学 机械工程学院,天津300134
引用格式:Xu L, Liu Z, Li X, et al. An improved mode time coefficient for dynamic mode decomposition[J]. Physics of Fluids, 2023, 35(10).
由标准DMD得到的模态时间系数总是呈指数增长或衰减,然而,对于非线性动力系统,比如瞬态流动,DMD模态随时间呈非指数变化。以指数形式变化的时间系数不能准确描述模态的变化规律。为此,提出了新的模态时间系数表达式:
在推导过程中没有引入关于两个相邻快照之间关系的进一步假设。因此,改进的模态时间系数并不局限于处理具有指数增长率的模态。从理论上讲,它具有描述任何类型增长率模态的潜力,在后续的算例测试中也证实了DMD-TC方法的这一优越性。
参考文献(Kou & Zhang et al., European Journal of Mechanics - B/Fluids, 2017)中对模态能量的定义,并将改进的模态时间系数替换传统的时间系数,得到第j个模态的能量值
根据上式计算所得能量占比的大小,即可对模态进行排序和选择。针对具有非指数增长率的模态,上述模态选取准则能够提供更合理的排序。
首先对比了DMD和DMD-TC得到的子函数的模态时间系数,存在明显区别。
然后比较了精确解、DMD和DMD-TC技术重构得到的子函数,发现DMD-TC重构得到的子函数与精确解吻合更好,能够较好地处理具有间歇特性和瞬变特性的模态。
最后将DMD、Kou & Zhang方法、DMD-TC得到的模态能量占比进行了对比,证明DMD-TC方法更可能得到合理的模态排序。
选取流场监测点的表压进行验证,比较了CFD结果与DMD、DMD-TC重构结果(以E点为例),DMD-TC重构与CFD结果吻合较好。
选取流场监测点的表压进行验证,比较了CFD结果与DMD、DMD-TC重构结果(以B点为例),DMD-TC与CFD结果吻合较好。
最后将DMD与DMD-TC得到的不稳定模态时间系数进行了对比(以模态ω=53.594Hz为例),发现DMD-TC的时间系数具有间歇性特征,这很好地解释了DMD-TC能够精准捕捉翼型动态失速的多尺度扰动。
以上验证算例表明:DMD-TC方法可以识别非稳定流场的关键模态,即使具有微小的初始幅值;同时可以准确描述模态的演变规律,包括指数型、对数型、线性、渐变间歇型、瞬变间歇型及其他复杂的演化规律。因此,DMD-TC是一种具有潜力的非稳定流场分析新方法。