高温合金,又称热强合金或超合金,是指在高温、应力条件下仍能按设计要求正常工作的金属材料,其服役条件苛刻:1)600-1200℃的温度;2)氧化和燃气腐蚀 环境;3)复杂应力(蠕变、高低周疲劳、热疲劳等)。因此除优异的承温能力、抗氧化性、抗热腐蚀、抗疲劳、断裂韧性/塑性等,还必须具备良好的组织稳定性和使用可靠性。
高温合金研发最早起源于20世纪20年代,30年代开始用于涡轮喷气 发动机,此后随着航空、航天发动机的升级换代,其工艺、成分、品 种、性能等也不断改进。高温合金的分类方法众多,如按基体元素、按制备工艺、 按强化方式、按使用性能等。按基体元素可分为铁基、镍基和钴基,其中镍基合金最为普遍;按制备工艺又可分为变形高温合金、铸造高温合金、粉末冶金高温合 金,这也是目前使用最多的分类方法。按制造工艺划分,目前我国高温合金市场需求占比最高的是变形高温,占整个高温合金市场需求的70%以上;按合金基体元素来分,占比最大的是镍基高温合金,占比达到了80%以上。
高温合金核心应用在航空航天领域,近几年已逐步延伸至许多民用领域。军用:高温合金一直是现代航空、航天发动机热端部件关键材料中不可替代的主角,没有高温合金就没有现代航空事业。民用:石油化工、电力、汽车、核能等多个工业行业,如工业用燃气、蒸汽轮机、车用涡轮增压器、石油化工能源转换装置等,民用领域高温合金的使用正在逐步替代传统的不锈钢。从需求占比看,全球高温合金主要应用在航空航天市场,占总使用量55%,其次是电力的20%和机械的10%。原材料占航空发动机成本约50%,高温合金为原材料的主要构成,约占材料成本的36%。
3)后部工序:热处理工艺及无损探伤等,是所有金属材料的共性。
在现代航空发动机中,高温合金占有极其特殊的重要地位。高温合金从诞生起就用于航空发动机,航空发动机内多数部件都需要在高温高压的恶劣 环境下长期工作,对性能、工艺要求极高,因此高温材料是必须的。在航空发动机内主要应用于四大热端部件:燃烧室、导向器、 涡轮叶片和涡轮盘,在高性能的航空发动机中,高温合金还用于压气机后端盘、转子叶片及机匣、环件、加力燃烧室和尾喷口等。
赛峰集团是航空发动机市场中涡扇发动机和战斗机发动机的主要制造商之一。该集团eAPU60微型涡轮发动机采用了增材制造的镍基合金喷嘴,并作为AW189型直升机的辅助动力装置的核心部件之一。
eAPU60涡轮喷嘴采用选区激光熔化3D打印工艺制造,采用镍基合金X代替传统上使用的铬镍铁合金铸件。传统的涡轮喷嘴由八个组件组成,通过3D打印允许将其切割成仅仅四个部件,使得喷嘴比原来轻了35%。采用3D打印技术制造涡轮喷嘴也缩短了开发时间,3D打印组件可以在几天内就完成制造。
XWB-97拥有有史以来首个最大的3D打印民用航空发动机组件
罗罗公司通过与英国制造技术中心(MTC)合作,在XWB-97发动机中采用3D打印制造了镍基合金前轴承座结构件,该部件直径1.5米、厚0.5米,大小类似于拖拉机轮胎。该组件并非整体,其包含的48个气动形状的叶片组件也是采用増材制造技术制成。
如此高的温度普遍使用主动冷却系统,即再生冷却结构,其水力直径约2 mm,比火箭发动机的冷却通道尺寸更小。2016年,美国ATK公司采用激光粉末床熔融技术,实现了燃烧室的一次性整体成型,不仅大幅降低了设计与制备难度,而且有效提高了燃烧室的整体性能,而高温合金就是制造燃烧室的主要材料。
2017年,美国洛克达因公司与美国空军合作开发了价值约1.15亿美元的AR1火箭发动机,旨在取代俄制RD-180发动机。
AR1火箭发动机采用3D打印制造了一种高强度、耐烧蚀性好的镍基超金属合金材料(Mondaloy200™),用于制造转子和流体之间传递能量的发动机部件,此前俄制RD-180发动机部件需要金属涂层,而这种新材料则无需涂层。
全球最强悍的GE9X航空发动机上应用的304个3D打印零部件详解
GE9X发动机低压涡轮TiAl合金叶片