耦合有限元模拟形状记忆弯曲微致动器
Coupled Finite Element Simulation of Shape Memory Bending Microactuator
(pdf下载:https://rdcu.be/duHgB)
UMAT子程序及示例下载:
https://simlab.ww.uni-erlangen.de/functionalmaterials/coupledfem_smasimulations
摘要
由于其高能量密度,形状记忆合金(SMAs)被研究作为自折叠结构中弯曲微型致动器的材料,实现可编程控制。为了在相变过程中预测电-热-力耦合效应的响应,量化SMA材料中的时间相关耦合效应显得极其重要。等温SMA材料模型无法处理热控制致动过程中变形、温度和电势之间的相关交互作用。本文中,我们利用标准热力学(Coleman-Noll过程)扩展了等温SMA模型,以处理多晶SMA的时间相关行为。该模型通过一个用户材料子程序(UMAT)实现,可以在标准有限元(FE)代码(Abaqus/Standard)中使用。模拟了拉伸样品和由20微米厚SMA箔制成的弯曲微致动器的时间相关载荷。给出了在应力诱导相变过程中的热弹性效应和热效应的实验和模拟结果对比研究。进行了形状恢复期间的焦耳加热模拟,包括拉伸和弯曲载荷。报告了伴随载荷和焦耳加热过程的温度随时间变化。发现耦合SMA材料模型能够近似描述受电-热-力耦合载荷作用的多晶SMA微致动器的时间相关场量。