1 研究背景及目的
随着功率电子器件向高功率密度和小型化发展,散热已成为其性能和可靠性的关键限制因素。液冷陶瓷热沉将传统陶瓷基板与液冷热沉部件进行集成,能够缩短传热路径,提升散热效率。而对于陶瓷热沉所需的封闭内腔微细结构,利用传统工艺成形较为困难。因此,本研究旨在验证光固化增材制造技术应用于高效率复杂陶瓷热沉制备的可行性。
论文原文下载见本文末
图1 传统功率电子封装结构与基于陶瓷热沉的封装结构对比
2 论文主要亮点
(2) 利用增材制造的设计自由度优势,提出并实现了贯穿式的歧管微通道冷却结构,相比传统歧管微通道结构提升了散热效率,并减小了压力损失。
3 论文试验方法
首先构建了流-热耦合仿真模型,对陶瓷热沉在不同冷却工质流量下的性能进行求解。基于仿真模型的迭代设计,提出了贯穿式歧管微通道结构,提高进出歧管流动的传热与水力学效率。在此基础上,利用光固化增材制造技术制备了贯通式及传统歧管微通道结构的氧化铝陶瓷热沉,表征其内腔成形完整性与表面质量,并搭建实验平台测试其实际性能。其中,分别利用压差传感器和热像仪测量热沉压降与表面温度分布,实验结果均与数值模拟结果进行了对比验证。
图3 陶瓷热沉实验测试装置
4 论文主要结果
在1 L/min的流量下,贯穿式歧管微通道结构的压降和热阻相比传统歧管微通道结构分别降低了19.8%和11.8%,并提高了温度分布的均匀性。
图4 实际陶瓷热沉表面温度分布与数值模拟结果对比
图5 贯穿式与传统歧管微通道结构整体热阻对比
图6 微通道和歧管1L/min流速的陶瓷散热器流线
5 论文结论
(2) 本研究提出并实现了贯穿式歧管微通道结构,该结构减少了传统歧管微通道结构中的竖直方向流动,实现了更高的散热效率和更低的压力损失,并能够针对非均匀热源分布进一步优化歧管结构设计以改善温度分布。
6 前景与应用
通过将液冷陶瓷热沉应用于功率电子封装,能够进一步集成简化封装结构,提升器件散热效率,提高可靠性;并发挥陶瓷材料耐磨损、耐腐蚀的性能优势,实现液态金属等高导热冷却工质的实际应用。
论文引用: