EMI抑制方案有许多组合,包括滤波器组合、变压器绕线安排,甚至PCB布局。本文提供一种结合共模电感与差模电感的磁混成,称之为混成式共模电感器。不仅保留共模电感的高阻抗特性,同时利用其很高漏电感当成差模电感用。不仅可以缩小体积节省滤波器成本,更提供了工程师快速解决传导型EMI 问题的方法。
在常规单级EMI 滤波器电路中,如图一,有共模噪声滤波器 (LCM、CY1与CY2) 与差模噪声滤波器 (LDM、CX1与CX2) 分别形成”LC滤波器”衰减共模与差模噪声。共模电感通常以高导磁锰锌 (Mn-Zn) 铁氧体 (Ferrite) 制成,电感值可达1~50mH。共模电感器,如图二,由于绕线极性安排,虽然两组线圈分别流过负载电流,但铁芯内部磁力线互相抵消,一般不存在铁芯饱和的问题。常用的铁芯有环型 (Toroidal)、UU型 (UU-9.8、UU-10.5等)、ET型与UT型,如图三。为了获得足够的共模电感值,要尽量让两组线圈的耦合达到最好,所以多采用施工成本较高的环型或一体成型的ET与UT 铁芯。
图一、常规EMI滤波器结构
图二、共模电感器
图三、共模滤波器(a)环型(b)ET型(c)UU型(d)UT型
从共模电感的工作原理与等效电路来看,如图四所示,双绕组的共模电感虽然有很好的耦合,但是还是存在漏电感,漏电感就是由漏磁通造成。这个漏电感在等效上串联在电路上,功能上与差模电感无异。所以可以说,共模电感器的漏电感可以利用来做为差模滤波器。然而如图三所示的共模电感器,由于机械结构的关系,其漏电感都很小,约莫在数mH到100mH。如果要得到更大的漏电感,只有增加匝数一途,如此一来,线径变细,电流耐受降低。要改善只有增加铁芯尺寸,当然也增加了滤波器的体积与成本。许多要求极高共模电感的应用,其实不在滤除共模噪声,而是要得到较大的漏电感当差模滤波器用,只是许多工程师不甚清楚罢了。
图四、共模电感器的等效模型
为了增加共模电感的漏电感,特殊的铁芯结构与绕线方法称为混成式共模电感器 (Integrated Common-mode Choke) 或者称混成共模电感器 (Hybrid Common-mode Choke),如图五所示。这样的结构,不仅可以保留共模电感量以充分滤除共模噪声,而且其漏电感形成的差模电感可以高达数百mH,配合适当的X电容,可以有效的滤除中低频段 (150kHz~3MHz) 的差模
信号。实验证明混成式共模电感器不仅具有很好的滤波特性,低成本与小体积更是最大的优点。
图五、立式与卧式混成式共模电感器
混成式共模电感器除保留了常规的共模电感器的规格外,还兼具差模电感的特性。一般除了用共模与差模电感量标示外,还要以以下参数来规范。
(1)共模阻抗 (Common-mode Impedance, ZCM) : 相较于电源阻抗稳定网络 (Line Impedance Stabilization Network, LISN)的高频等效电阻 (共模为25W),滤波用的共模阻抗越大越好。除了铁芯材质外,绕线的方法(槽数)更影响高频阻抗的高低。图六为共模阻抗的量测法,图七为ASU-1200系列共模阻抗特性图。由于绕线的层间杂散电容 (Stray Capacitance, CS) 存在,高频时将变为电容性;CS越小越好。
图六、共模阻抗量测
图七、ASU-1200系列共模阻抗特性图
(2)共模电感 (Common-mode Inductance, LCM) : 传统上,习惯以外加测试电压 (VOSC)与频率来规范共模电感。依铁芯材料特色,共模电感以VOSC = 1Vac @100kHz 量测较为稳定。
(3)差模阻抗 (Differential-mode Impedance, ZDM) : 同样的,量测等效差模阻抗的方法如图八所示,用差模阻抗特性图 (如图九)来定义差模滤波的效能;相较于LISN 的等效电阻100W,差模阻抗也是越大越好。当然高频时一样会变成电容性,但只要阻抗够大,一样有滤波的效果。
图八、差模阻抗量测
图九、ASU-1200系列差模阻抗特性图
(4)差模电感 (Differential-mode Inductance, LDM) : 差模电感一样可以VOSC = 1Vac @100kHz 来规范。在实用上,混成式差模电感量必须在100mH 以上,配合X电容,才能有效的滤除差模噪声。
(5)差模饱和电流 (Isat) : 如前所述,因为等效差模电感必须流过负载电流,在负载电流的峰值下,差模电感不能饱和,否则其滤除噪声的能力将降低。图十为一般桥式整流滤波电路的输入电流波形。必须确保在最大电流峰值下,差模电感量没有因饱和而下降。传统上,以电感值衰减20% (相对于没有直流偏置) 为其差模饱和电流。
(a)
(b)
图十、(a) 全桥滤波电路 (b) 输入电流波形
(6)有效承受电流(Irms) : 等效上就是规范线径粗细。虽然如图十的输入电流波形,但其有效值并不高,一般可以两倍的输出功率除以最低输入电压估计。例如全电压范围25W 的电源适配器,输入电流的有效值约为 2*25W/90Vac = 0.55A。
表一为ASU-1200 系列的电气参数表
LCM(mH) ±20% | LDM(mH) ±10% | Isat(A) | Irms(A) | |
ASU-1201 | 4.0 | 143 | 3.2 | 1.00 |
ASU-1202 | 6.0 | 220 | 2.9 | 0.80 |
ASU-1203 | 9.0 | 310 | 2.4 | 0.75 |
ASU-1204 | 12.0 | 410 | 2.2 | 0.75 |
ASU-1205 | 16.0 | 530 | 1.9 | 0.60 |
ASU-1206 | 20.0 | 670 | 1.8 | 0.55 |
混成式共模电感器,简单说就是一个传统共模电感与一个(或两个)差模电感的混成。在应用上,EMI工程师必须选定需要的共模电感、差模电感以及相关的差模饱和电流与承受电流。ASU-1200 系列混成式共模电感适合应用在25W到50W的Flyback 电路或120W以下PFC 电路。图十一为两种应用混成式共模电感器的Flyback 电路。
(a)
(b)
图十一、两种应用混成式共模电感器的Flyback 电路(a) 常规位置搭配X电容 (b) 置于桥整后与电解电容形成P型滤波器
图十二为应用在临界导通模式 (Boundary Conduction Mode) 主动功因改善 (PFC) 电路的滤波器。
图十二、应用于PFC电路的混成共模电感器
图十三到图十五为应用ASU-1203混成式共模电感器在一个24W (12V/2A) 的离线式Flyback 电源中EMI 的表现。明显地可以看出这种共模电感不只有效的衰减共模噪声,同时其差模电感也大量的衰减差模噪声。整体而言,装有ASU-1203 的EMI 表现,在中低频段约有30dB的衰减。
图十三、共模噪声衰减 (蓝色曲线为装有ASU-1203 的共模噪声量测图)
图十四、总噪声衰减 (蓝色曲线为装有ASU-1203 的总噪声量测图)
图十五、差模噪声衰减 (蓝色曲线为装有ASU-1203 的差模噪声量测图)