▲ (a) 有限元模型; (b) 应力-应变曲线
由结构材料疲劳引起的大型事故
对于IN718合金的低周疲劳已经进行了大量研究,但是先前的研究多采用离位表征的方式,重点关注不同变形条件下IN718合金的综合疲劳性能。离位表征很难获取IN718低周疲劳的变形过程,大多通过经验或半经验公式推导寿命,对材料本征特性关注较少,难以深入准确分析其变形机制。
事实上,材料疲劳寿命80%消耗在与材料本征特性密切相关小裂纹萌生和扩展过程,且扩展速率与传统经验公式不符,无法得到有效预测。原位技术能够有效观察IN718合金的低周疲劳变形过程,得到疲劳过程中的小裂纹萌生和扩展的完整信息,同时获取表面滑移演变、晶格转动以及应变演化情况。结合原位方法获得的信息,可以深入分析IN718合金的低周疲劳变形机制。
▲ (a) 有限元模型; (b) 应力-应变曲线
浙江大学张泽院士团队联合北京工业大学利用原位疲劳测试装置,针对研究背景中的现存问题以及利用原位SEM-EBSD表征方法,设计了IN718合金低周疲劳的原位实验,研究了IN718合金低周疲劳变形过程中晶粒尺度上的组织演变。整个研究工作,系统研究了滑移形貌、施密特因子的演化、晶格转动和晶粒间塑性应变累积。
▲初始显微组织
结果表明,根据断裂机制的不同,可以将IN718合金室温低周疲劳变形行为分为两个区域。边缘区域:由驻留滑移带相关的塑性应变局部化主导,在晶粒内部沿驻留滑移带产生疲劳微裂纹,不同晶粒之间的微裂纹连接扩展。内部区域:与晶界塑性应变积累、应变不相容性以及位错相关的亚结构相关,不同晶粒之间的非均匀变形导致材料损伤积累,进而发生瞬间断裂。
▲(a)区域一和(b)区域二的变形机制