首页/文章/ 详情

超级简单的电极孔隙迂曲度测量方法

6月前浏览3618
锂离子电池极片是由颗粒材料和粘结剂组成的,电极中的孔包括通孔、交联孔、盲孔、闭孔等,如图1所示。这几种孔在电池反应过程中作用并不相同。交联孔和通孔是主要的锂裡离子参与反应和传输的主要通道;半通孔不适用于锂离子的完全传输,但在锂离子顺利进入这些孔隙的前提下,它可充当电化学反应的场所;闭孔因为锂离子无法输出,锂离子传输和反应均无法进行,属于无效孔。由于粘合剂用作颗粒之间的连接组分,因此交联和盲孔可能占较大比例,而且辊压可以增加闭孔的数量。
 
锂电池极片孔隙结构示意图
锂离子电池极片中有两种相互竞争的电荷传输过程,主要决定电化学性能:一方面,电解液中的离子在极片和隔膜的的孔隙传输,同时还在固相电极材料内传输;另一方面,电子通过电极本身的活性材料和导电剂等连接在一起的固相传输。通常,具有良好分布的高孔隙率的电极表现出良好的离子传输特性,但电子导电性较差;而非常致密的电极会呈现较差的离子传输特性,但具有良好的电子导电性。
电极多孔结构的复杂几何给开发合适的电池模型带来了困难。孔隙率、孔隙迂曲度等参数是多孔电极的关键参数,本文详细介绍一个简单的基于图像处理的多孔电极中孔隙迂曲度的测量工具BruggemanEstimator。
BruggemanEstimator,孔隙迂曲度Bruggeman指数估算,一款开源软件代码,通过分析电极表面和截面两张照片中活性物质颗粒的取向分布来估算电极在三个方向上的迂曲度。理论基础和原理可参见文献
首先需要在电脑安装软件Wolfram Mathmatica,本开源代码在该软件中运行。也可以将代码保存成了CDF文件,不想安装软件,可以下载CDF文件播放器,也可以运行该CDF文件,计算迂曲度指数。
详细操作过程:
1、启动软件
2、打开迂曲度指数估算代码文件
3、下拉到如下图所示位置,包含操作菜单,然后计算初始化
初始化后,各个界面截图如下
4、加载极片表面照片(Top view)
5、标定表面照片中的活性物质颗粒轮廓
6、加载极片截面照片(Cross view)
7、标定截面照片中的活性物质颗粒轮廓
8、点击Fit按钮,计算标定颗粒的a,b,c三轴特征和颗粒取向角度
9、点击Calculate按钮,计算XYZ三个方向的迂曲度指数aX,aY,aZ。
球形NMC正极,片状石墨负极,菱形LCO正极估算结果如下:
电池充放电过程中,锂离子传输的方向实际是z轴方向,将该软件估算的z轴方向迂曲度指数输入锂离子电池仿真计算中,就可以模拟电池性能,这样计算结果与实际更接近,还可以建立电池孔结构特征与电池性能之间的关系。
参考文献:Ebner M , Wood V . Tool for Tortuosity Estimation in Lithium Ion Battery Porous Electrodes[J]. Journal of the Electrochemical Society, 2014, 162(2):A3064-A3070.
来源:锂想生活
化学电子UGUM理论材料
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2023-12-18
最近编辑:6月前
堃博士
博士 签名征集中
获赞 83粉丝 65文章 334课程 0
点赞
收藏
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈