根据孙训方教授所著《材料力学(Ⅰ)》第4.4节“梁横截面上的正应力 梁的正应力强度条件”可知,等直梁在纯弯曲时横截面上任一点处正应力的计算公式为:
式中:M为横截面上的弯矩;Iz为横截面对中性轴z的惯性矩;y为所求应力点的纵坐标。
图1 等直纯弯梁示意图
联立两式可得:
2.案例计算
建立一个长度为10m的悬臂梁,梁上施加大小为5e5N/m的均布荷载,代码如下
model new
fish def _Parameters
b = 0.6 ;width
h = 0.9 ;height
L = 10.0 ;length
E = 3e10 ;young
v = 0.22 ;poisson ratio
q = -5e5
xsize = 50
ysize = 3
zsize = 9
end
@_Parameters
zone create brick point 0(0,[-0.5*b],[-0.5*h]) point 1([L/2.0],[-0.5*b],[-0.5*h]) point 2(0,0,[-0.5*h]) point 3(0,[-0.5*b],[0.5*h]) size @xsize @ysize @zsize
zone reflect normal (0 1 0) origin (0,[-0.5*b],[-0.5*h])
zone reflect normal (1,0,0) origin ([L/2.0],[-0.5*b],[-0.5*h])
zone cmodel assign elastic
zone property young @E poisson @v
zone gridpoint fix velocity (0,0,0) range position-x -0.01 0.01
zone face apply stress-zz [q/b] range position-z 0.449 0.451
model solve
利用以下代码求取梁挠度的理论值,计算公式依据孙训方教授所著《材料力学(Ⅰ)》(第四版)。
table 1 label 'AnalyticalDisp'
fish def _AnalyticalDisp
b = 0.6
h = 0.9
L = 10.0
E = 3e10
I = b*h^3/12.0
EI = E*I
MaxZdisp = q*L^4/(8*EI)
count = 0
loop i(0,L,0.1)
count += 1
zdisp = (i^2-4*L*i+6*L^2)*(q*i^2/(24*EI))
table.x(1,count) = i
table.y(1,count) = zdisp
endloop
end
@_AnalyticalDisp
挠度理论值与数值模拟计算值见下图:
fish def _Pos
_y = -0.35
_z1 = 0.4
_z2 = -0.4
end
@_Pos
zone group 'top' range position-y @_y position-z @_z1
zone group 'bot' range position-y @_y position-z @_z2
table '2' label '_NumericalM'
fish def _NumericalM
dx1 = 0.5*L/xsize
x1 = 0.5*dx1
count = 0
loop i(x1,L,dx1)
count += 1
zt = zone.near(i,_y,_z1)
zb = zone.near(i,_y,_z2)
s1 = zone.stress.xx(zt)
s2 = zone.stress.xx(zb)
w = b*h^2/6
M = 0.5*w*(s1-s2)
table.x(2,count) = i
table.y(2,count) = M
endloop
end
@_NumericalM
图3 弯矩对比图
[1].材料力学(Ⅰ)[M].高等教育出版社:,200208.
[2].FLAC3D在岩土工程中的应用[M].中国水利水电出版社:,201106.