首页/文章/ 详情

聚焦ℱ新碳纤维制造企业50强

3月前浏览690

碳纤维是一种含碳量在95%以上的高强度、高模量纤维的新型纤维材料。既有碳材料“硬”的固有特征,又兼备纺织纤维“柔”的可加工性,素有材料之王的美誉。

起初,碳纤维主要用于航空、军用等高精尖领域,步入21世纪后,随着碳纤维生产工艺技术的成熟,已经在汽车制造、新能源、体育用品、医疗器械、建筑及其结构补强等民用领域逐渐普及开来,并且随着产业需求的大幅增长,碳纤维产业的增速也愈发明显。

不得不提的是,我国碳纤维材料长期依赖国外进口,主要发展还是集中在近十年。“十一五”期间,我国将碳纤维材料列入重点发展材料名单,从2010年的1200吨到2016年的4600吨,我国的碳纤维自主供给率逐年提高。但近几年,却出现一些与发展大势不相符的现象。

有产能,无产量

据公开资料显示,2014年我国碳纤维制造企业就已经拥有1.5万吨的产能,而在2016年更是提升到了1.8万吨,但实际的产量却还不到实际产能的三分之一。究其原因,大体可以归为两个因素。

一方面,虽然近年来我国在碳纤维制造领域突飞猛进,但受限于起步晚的客观原因,数十年的技术壁垒并非一朝一夕可以打破,诸多行业核心技术仍然掌握在日本东丽、美国赫克塞尔等少数国外企业手中,技术含量较低、质量较差成为了阻挡我国碳纤维销路的一大阻碍。

另一方面,除一些航空航天、军工等必须采购国产碳纤维材料的订单,居高不下的生产成本也成为在与国外企业竞争中的一大劣势。据海关显示,2016年我国碳纤维及制品进口量为15960.47吨,其中仅日本一国进口量就为6027.49吨,且同比增长10.34%,这一数据与我国4600吨的年产量形成了鲜明的对比。不过,随着国内企业在研发上的不断投入,我国在碳纤维关键生产环节也取得了不小的突破。

2017年,长期以来被国外封锁垄断的T800碳纤维宣告正式实现了低成本的国产化。其实T300、T800、T1000等称谓,并非某一标准,只是日本东丽公司的碳纤维型号,由于东丽公司的行业地位,导致其型号逐渐演变成为了碳纤维的强度标杆。而东丽公司的T800系列更是唯一被美国FAA批准用于波音777关键飞行部件的碳纤维材料,其在航空工业中的重要性不言而喻。T800碳纤维的低成本国产化不仅解决了我国以往到处求人的囧况,更有希望直接反扑国际市场。

浮上水面的死亡名单,难以解决的盈利问题

过去两年,碳纤维行业发生很多大事。2017年初,作为碳纤维企业破产第一案的浙江泰先新材料股份有限公司正式进行破产清算程序。而仅仅不到一年,沈阳中恒新材料有限公司由于资不抵债,于2017年12月申请破产。

早在2012年时,有报道称,沈阳中恒一期工程建成年产1500吨国产化高性能PAN基碳纤维原丝、500吨碳丝生产线及360万平米碳纤维预浸料生产线,并计划在五年内使碳纤维相关产品产能达到XX的产业规划,可谁曾想到后面的境遇。而据业内人士透知,亏损绝非一两家企业的个例。这也令人不禁发问:目前我国的碳纤维市场到底处于什么阶段?

复合材料工业协会的报告中指出,目前我国碳纤维应用领域中,体育休闲领域约占58%,工业领域占36%,航空航天占6%左右。虽然我国然纤维下游应用和产业化正在加速推进,但动辄数年的开发周期并非每家企业都能承受,尤其在新能源领域,大部分企业仍然抱持观望态度。毕竟对于多数的中小民营企业,生存仍然是首要问题。

随着新能源汽车等现代工业的发展,碳纤维行业无疑迎来了发展的风口。但从整体来看,碳纤维产能的大规模发展与依然相对脆弱的产业链形成了鲜明的发展矛盾,企业盈利仍是大部分生产厂家所共同面对的难题。

未来几年,中国碳纤维行业或许将会迎来持续性的洗牌,但我们丝毫不会怀疑中国碳纤维领域的未来。在一些企业倒下的同时,总有另一些企业会在技术、产能等方面不断强大,时间站在我们一边。

来源:硅谷动力

特别声明:公 众号部分文章和图片来源于网络,发布的目的在于传递更多信息及分享,并不代表本公 众号赞同其观点和对其真实性负责,也不构成任何其他建议。版权归原作者所有,任何组织或个人对文章版权或内容的准确性存在疑议,请第一时间联系我们,我们会及时修改或删除。

广告免责声明:为了公 众号稳定发展,本公众 号会不定时承接行业广告、产品推广、会议培训推广等广告展示方式有文章前/中/后以图片形式展示、软文展示、产品链接展示等。本公 众号只提供发布平台,对广告内容的真实性或有效性不做评价,请自行判别。所有广告内容及相关事项与本公 众号无关,特此声明。

 

来源:碳纤维生产技术
复合材料航空航天汽车建筑新能源材料
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-08-22
最近编辑:3月前
碳纤维生产技术
助力国内碳纤维行业发展
获赞 27粉丝 34文章 3752课程 0
点赞
收藏
作者推荐

发展ℱ从历史角度探寻碳纤维的发展历程

要说碳材料大家肯定会想到煤炭,但碳材料大家庭可不止煤炭一种。从石墨到金刚石、从碳纤维到碳纳米管、从富勒烯到石墨烯,碳材料大家庭可谓五彩缤纷,各行各业都有碳材料的应用。碳材料是人类最早利用的元素,人类对碳材料的利用伴随着人类文明史的发展。碳纤维作为新型碳材料,从世到现在已经有150多年了,近几年来更是受到投资者的关注。碳纤维已进入到人们生活的很多方面,小至碳手机壳,大至航天飞机,碳纤维身影随处可见。碳纤维的技术一直被国外封锁,但是我国对碳纤维的研究也从没停止过。一直被国外封锁垄断的T800碳纤维在哈尔滨宣告实现了低成本国产化,其生产成本仅为国际价格的三分之一。在实现低端市场逐步替换国外产品的同时,在中高端市场上也打破了国外企业垄断。更可贵的是,国产T800型碳纤维在性能上完全不输于日本东丽公司的同类产品,而在局部技术参数上更是具有一定优势。虽然今日中国碳纤维产业正处于发展期,但也是经历了风风雨雨才有今天的成绩。人们总想给重要的历史人物盘上高大上的故事,碳纤维的出场也不例外,那就是人尽皆是的爱迪生发明电灯泡。1860年-1900年:碳纤维是如何诞生的碳纤维最早诞生于美国,作为白炽灯的发光体诞生的。英国化学家、物理学家约瑟夫·威尔森·斯万爵士(Sir Jo⁃seph Wilson Swan,1828—1914年)发明了以铂丝为发光体的白炽灯。为解决铂丝不耐热的问题,斯万使用碳化的细纸条代替铂丝。由于碳纸条在空气中很容易燃烧,斯万通过把灯泡抽成真空基本解决了这一问题。1860年斯万发明了一盏以碳纸条为发光体的半真空碳丝电灯,也就是白炽灯的原型。斯万发明的白炽灯比爱迪生(Thomas Alva Edison,1847—1931年)早了20年。由于当时真空技术不成熟,灯的寿命不长。19世纪70年代末,真空技术有了较大发展,斯万发明了更实用的白炽灯,并于1878年获得了白炽灯的专利权。1879年,爱迪生把这专利买下来,发明了以碳纤维为发光体的白炽灯。1892年爱迪生发明的“白炽灯泡碳纤维长丝灯丝制造技术,获得了美国专利(专利号470925)。可以说,爱迪生发明了最早商业化的碳纤维。1900年-1950年:碳纤维进入休眠期尽管早期碳纤维获得了初步成功,但由于天然纤维制得的碳纤维几乎没有结构强力,制成产品的质量和可靠性都不佳,使用中很容易碎裂、折断,即便只是作为白炽灯的发光体,其耐用性也很不理想。早期的碳纤维灯丝,很快就被钨丝取代了。此后,碳纤维的研究停滞不前,进入了休眠期。1950年-1960年:碳纤维工业化直到20世纪50年代中期,美国空军需要寻找能够更加耐烧蚀的材料来制作航天飞机,以应对当时激烈的美苏激战。经过一系列的研究,最终发现了熔点在3600℃的材料,并取名为“碳纤维”。时隔50年之后,碳纤维再一次登上历史舞台。与此同时,美国人威廉姆·F·阿博特(William F. Abbott)最先发明了提高碳纤维强力的方法,于1959年11月12日向美国专利局提出了“碳化纤维方法”。1962年9月11日,该申请获得了美国专利局的专利授权。自此,碳纤维重新进入人们视野,并逐渐形成工业化和商业化。1960年:聚丙烯腈工艺的发现碳纤维性能得以跨越式提升的原因,就是发明了更好的聚丙烯腈纤维。日本的科学家们最先研发出了纯聚丙烯腈。加工中,聚丙烯腈主链中连续的碳原子和氮原子链形成了高度取向的石墨样层,减少了对热拉伸的需求。由于过度关注黏胶基和中间相沥青基碳纤维的发展,美国科学家错过了聚丙烯腈基碳纤维技术的发展机遇。在西方科学家几乎不知情的情况下,日本科学家一直在默默地开展这项技术的研究。1962年,日本碳公司开始生产低模量聚丙烯晴基碳纤维。1970年:技术互换、美日同盟日本科学家進藤昭男之所以萌生开展高性能碳纤维研究的念头,就是因为受到了美国该领域技术进展报道的启发。日本东丽工业公司(Toray Industries)开发了性能极优异的聚丙烯腈纤维,占据了碳纤维技术的领导地位。1970年东丽公司与美国联合碳化物公司UCC签署了技术互换协议,把美国带回了碳纤维制造的前沿,并合作生产了T300碳纤维,这比中国早了整整30年。2015年,日本东丽公司又把从聚丙烯腈纤维原丝到碳化的全过程的生产工厂建在了美国。2000年:以小博大、成就日本东丽东丽1971年在世界率先实现碳纤维量产,花了超过1400亿日元从事研究开发,却一直都是亏损。当时,其他碳纤维生产商都在争夺美国的波音订单,体量还比较小的东丽公司做了一次大赌,生产了一大批如鱼竿、高尔夫球杆等类似的碳纤维器具,当时体育休闲时尚处在一个崛起的阶段。日本东丽迅速占领了市场份额,并不断扩大。随着碳纤维在各行各业的渗透和广泛引用,东丽也于2003年,最终拿到了美国波音的长达50年的订单,决定了后来日本东丽在碳纤维领域的霸主地位。东丽从发明到稳定盈利,耗时50年。国产T800可以替换东丽同类产品所谓T300、T800、T1000等称谓,其实是日本东丽公司的碳纤维型号,只是由于东丽公司在行业内的地位,所以导致其型号在媒体的报道中,无形中演化成类似于某种强度的碳纤维标杆。从中其实也能看出日本企业在碳纤维领域的行业地位。在集成电路领域中,三星的14nm制造工艺虽然和Intel的14nm制造工艺同属于14nm,但采用三星工艺加工出来的芯片在性能、功耗等方面与Intel的相比却存在一定差距。那么,国产的T800和日本东丽的T800也存在类似同属T800,但产品性能却逊色不少的情况么?一篇由中航复合材料有限责任公司、北京航空材料研究院、先进复合材料重点实验室、核工业理化工程研究院、北京航空航天大学材料科学与工程学院技术人员共同署名发表的论文对国产T800碳纤维和日本东丽T800碳纤维做了非常详细的测试。在测试中,研究人员采用日本Hitachi公司生产的S4800N型冷场发射扫描电子显微镜,观察碳纤维的表面形貌,并计算纤维直径。采用美国Veeco公司生产的D3000型原子力显微镜,观察碳纤维表面形貌,分析表面粗糙度。采用英国Kratos公司生产的X射线光电子能谱仪,分析碳纤维的表面成分。采用北京航空航天大学研制的微脱黏试验机,测试纤维与基体树脂的界面剪切强度。采用美国Instron公司生产的5982型材料电子万能试验机测试复合材料室温干态力学性能。测试表明:在表面物理态上,相对于东丽T800H碳纤维,国产T800碳纤维的表面较为粗糙,沿纤维轴向分布着更密集的沟槽,且沟槽的深度也较深,这种形貌特征有利于提高国产T800碳纤维与基体树脂的机械啮合作用,从而提高复合材料的界面性能。由于国产T800碳纤维的氧碳原子比约为T800碳纤维约为31.2%,约为东丽T800H碳纤维的2倍,因此,国产T800碳纤维能够通过化学键合或分子间作用力与基体树脂形成相互作用,从而提高复合材料的界面性能。加上之前提到的在表面物理态上的差异,使得国产T800碳纤维与HT-280树脂能形成更好的界面黏结。而测试也证明了这一点,东丽T800H碳纤维与HT-280树脂的界面剪切强度约为92MPa,国产T800碳纤维与HT-280树脂的界面剪切强度约为117MPa,后者较前者高约27%。在力学性能方面,国产T800/HT-280复合材料的0°拉伸、90°拉伸、弯曲、面内剪切和层间剪切等力学性能均普遍高于东丽T800/HT-280复合材料。其中,90°拉伸强度高约25%,面内剪切强度、弯曲强度高约12%、层间剪切强度高约7%。一篇中国科学院大学的博士论文也证明:国产T800碳纤维拉伸强度平均值5.63GPa(东丽T800为5.49GPa),弹性模量平均值292GPa,断裂伸长率平均值1.9%,与东丽公司T800碳纤维产品一致,表明国产碳纤维力学性能完全达到了国外同类产品水平,且各项指标Cv值均较低,稳定性较好。国产T800碳纤维12K产品的元素成分和表面活性与东丽T800碳纤维12K产品比较一致。国产T800碳纤维整体可媲美日本东丽T800产品,完全可以取代国外同类产品加以推广应用。来源:贤集网 特别声明:公 众号部分文章和图片来源于网络,发布的目的在于传递更多信息及分享,并不代表本公 众号赞同其观点和对其真实性负责,也不构成任何其他建议。版权归原作者所有,任何组织或个人对文章版权或内容的准确性存在疑议,请第一时间联系我们,我们会及时修改或删除。广告免责声明:为了公 众号稳定发展,本公众 号会不定时承接行业广告、产品推广、会议培训推广等广告展示方式有文章前/中/后以图片形式展示、软文展示、产品链接展示等。本公 众号只提供发布平台,对广告内容的真实性或有效性不做评价,请自行判别。所有广告内容及相关事项与本公 众号无关,特此声明。 来源:碳纤维生产技术

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈