首页/文章/ 详情

研究ℱ连续SiC纤维制备工艺及功能化研究

3月前浏览703

本文摘要:(由ai生成)

连续SiC纤维是重要耐高温材料,在航空、民用及军事领域应用广泛。尽管制备技术复杂,日本和美国掌握核心技术,但我国通过自主研发也取得一定成果。国防科技大学等国内机构已研制出系列连续SiC纤维,并探索了功能化途径,如引入异质元素等。

连续SiC纤维是高推重比航空发动机重要的耐高温、低密度热结构材料,在航空用陶瓷基复合材料中具有不可替代的地位;同时在民用领域如冶金高温碳套、柴油发动机废气处理、隔热高温微粒过滤材料等均也有着广泛应用;此外,碳化硅纤维在军事领域也有极为重要的应用。碳化硅纤维商业价值巨大,任谁都想分得一杯羹,但高傲如它,不是随随便便就能被制造出来的,不信你看。

   

图 Sylramic™ SiC Fiber

自1975年Tohoku大学Yajima教授开创先驱体转化法制备连续SiC纤维方法以来,先驱体转化法一直是制备连续SiC纤维的最主要方法。在产业化方面,日本碳素有限公司于1983年实现了SiC纤维工业化生产,直至现在日本已工业化生产的碳化硅纤维至少发展了三代,其第三代碳化硅纤维在1300至1800℃的空气中仍然具有良好的热稳定性。然而,经过了多年的发展,当前国际上只有日本和美国等寥寥无几的国家掌握该技术核心。由于在军事领域具有重要的应用前景,SiC纤维一直是日美等国长期以来一直对我国的技术封锁和禁运品。尽管相比于成熟的碳化硅纤维商品而言,我国碳化硅纤维产品是缺乏竞争力的,但就小编看来,在技术封锁,设备封锁的大环境下,被迫“闭门造车”的我们所取得的成果也是还行吧。

   
一、连续SiC纤维制备技术概况        

制备SiC纤维主要有4种方法:先驱体转化法(Polymer-Derived,PD)、化学气相沉(ChemicalVaporDeposition,CVD)法、活性碳纤维转化法和超微细粉高温烧结法,其中,只有先驱体转化法(PD)和化学气相沉积法(CVD)实现了商品化制备。活性碳纤维转化法,所得纤维的强度和模量均不高;超细微粉烧结法制备的纤维大量富碳、丝径较粗、强度较低,抗氧化性较差。

CVD法是以连续的碳纤维,W丝等无机纤维为芯材,以甲基硅烷类化合物为原料,在氢气流下于灼热的芯丝表面上反应,裂解为SiC并沉积在芯丝上而制得。CVD法制备的连续SiC纤维直径较粗(>100μm),主要以单丝形式增强金属基材料。

PD法是目前制备细直径连续SiC纤维的主要方法,已实现工业化生产,其工艺路线包括先驱体的合成、先驱体的熔融纺丝、将可溶可熔的原纤维进行不熔化处理及不熔化纤维的高温烧成等四大工序。先驱体法具有纤维直径细、可制备不同截面形状、成本低、极适合工业化生产等特点,并且弥补了CVD法不易编织、难于制造复杂形状构件的不足。

   

图 先驱体转化法制备SiC纤维的工艺流程

国外先驱体转化法制备SiC纤维的研究开发可以分为三代:第一代的典型代表是日本碳公司的NicalonNL202纤维,在空气中1000℃时仍然有良好的热稳定性,但由于纤维中含有较多的SiOxCy杂质相和游离碳,在空气中1000℃或惰性气氛中1400℃以上将发生分解反应并伴随着迅速的结晶生长,导致纤维强度急剧降低,限制了其在陶瓷基复合材料上的应用。针对这一问题,日、美等国采用不同的技术路线,研制了第二代低氧含量的SiC纤维,典型代表是日本碳公司的Hi-Nicalon纤维和日本宇部兴产公司的TyrannoZE 纤维。此类纤维在1200~1300℃的空气中具有良好的热稳定性。在此基础上开发的第三代SiC纤维,在组成上杂质氧、游离碳含量进一步降低,接近碳化硅的化学计量比,结构上也由原来的β-SiC微晶状态或中等程度结晶变为高结晶状态。其典型代表是日本碳公司的Hi-NicalonS 纤维、日本宇部兴产公司的Tyranno-SA以及美国DowCorning 公司的Sylramic纤维,该类纤维在1300~1800℃的空气中具有良好的热稳定性。

   

图 国防科技大学研制的系列连续SiC纤维

国防科技大学是国内最早开展SiC纤维研制的单位,经过多年的技术攻关,突破了多项连续SiC纤维制备关键技术,制备出了不同耐温性和不同功能的系列连续SiC纤维。

   
二、功能化SiC纤维三大途径        

在要求SiC纤维作结构材料使用的同时,通常还要求SiC纤维具有某些特殊的功能,因此实现功能化SiC纤维已成为一大研究热点。目前,实现SiC纤维的功能化途径主要有引入异质元素法、改变截面形状法和表面化学镀改性法。

1      
引入异质元素实现功能化    

先驱体SiC纤维工序包括先驱体的合成、熔融纺丝、不熔化处理、高温烧成等。若在先驱体的合成、纺丝等工序中引入异质元素,可制备出具有低电阻率、高抗拉强度、雷达波吸收、耐超高温等性能的功能化SiC纤维。目前,在SiC纤维中引入的异质元素主要有Ni、B、Al、Ti、Zr、Fe等。下文将对部分异质元素做简单说明。

NiSiC纤维通用型SiC纤维电阻率较高,例如NicalonSiC纤维电阻率为106Ω.cm左右,是良好的透波材料。当电阻率降低至100~103Ω.cm之间时,SiC纤维对雷达波具有较好的吸收效果,是一种良好的吸波材料。基于其电阻率可调的原理,可将过渡金属纳米微粒引入到聚碳硅烷(PCS)先驱体中,进而制备出电阻率较低、力学性能优异的SiC纤维。

BSiC纤维B的引入可有效抑制高温烧结过程中SiC晶粒长大,保证了纤维的高温力学性能。美国DowCorning公司依据引入烧结助剂制备多晶纤维的创新方法,在SiC纤维的制备过程中引入B,再经1800℃高温烧结制得含B的SiC纤维。此纤维为化学计量比,具有高结晶度、高拉伸强度、高模量、良好的导热率等特性。

ZrSiC纤维为了增强SiC纤维的吸波性能和耐高温性能,Ube公司将MarklII型PCS和乙酰丙酮锆在300℃氮气保护下反应制得聚锆碳硅烷(PZCS),然后经熔融纺丝、空气交联和1300℃惰性气氛中裂解制得含Zr的SiC纤维。结果显示该纤维氧含量为9.8%,拉伸强度为3.3GPa,耐热温度达到1500℃,电阻率约为102~103Ω•cm且连续可调,是一种良好的吸波材料。此外,有研究人员比较了含Zr和含Ti的SiC纤维的耐高温性能,发现含Zr的SiC纤维的耐高温性能明显优于含Ti的SiC纤维

TiSiC纤维早期是由矢岛等为了提高纤维的耐热性,引入金属Ti制得的。一般用两种含Si和Ti的聚合物作为先驱体反应生成嵌段共聚物,经熔融纺丝、不熔化处理及高温裂解制得含Ti的SiC纤维。此外,Ti的加入除了提高纤维的耐热性外,在宏观电性能上也有不同,可将电阻率调节到10-2~102Ω.cm,该纤维可以吸收频率为500MHz~3000GHz的电磁波,能够很好地作为结构吸波材料使用

2      
改变SiC纤维截面形状实现功能化    

由先驱体法制备的碳化硅纤维是一种半导体材料,其电磁性能可以通过使用各种方法进行调节,经过一定的调节可以使碳化硅纤维具有雷达波吸收性能。将碳化硅纤维异形化可以使碳化硅纤维具有较好的吸波性能,并且改变纤维的截面形状可以改变纤维的吸波性能。目前,异形截面SiC纤维主要有C形、三叶形、三折叶形、六叶形、条形、中空形、十字形等,几种典型的异形截面SiC纤维如下图所示。

   

图 几种典型的异形截面SiC纤维

(a)三叶形;(b)三折叶形;(c)六叶形;(d)条形;(e)中空形;(f)十字形

几种典型异形截面SiC纤维的电磁性能如下表所示,对比可以发现截面形状的不同导致纤维具有不同的电磁参数。三叶形SiC纤维的介电损耗角正切值最大,约为其他纤维的3~4倍,而C形SiC纤维由于其结构的特殊性,其介电常数实部值和虚部值最大。通观异形SiC纤维的介电特性可知,若将几种异形截面纤维混杂在一起可望获得具有宽介电常数实部值、虚部值和宽介电损耗角正切值的材料,能满足某些特殊场合的应用。

表 几种典型异形截面SiC纤维的电磁性能对比

截面

电磁性能

吸波性能

C形

X波段,介电常数虚部为4.7~5.94,实部8.79~9.15,介电损耗角正切值为0.52~0.65,磁导率虚部为0,实部为1

具有较好的电磁波吸收性能

三叶形

介电常数实部值与圆形截面SiC纤维相当约为4.02~5.04,但其虚部值约圆形SiC纤维的30~60倍,高达1.78~4.69

在X波段具有较好的电磁波吸收性

三折叶形

在X波段,磁导率实部为1,虚部为0,长纤维的介电常数虚部为3.02~4.03,实部为6.52~6.88;无规则排列短切纤维的介电常数实部为10.5~12.0,虚部为11.1~14.2

无规则排列短切纤维具有更高的介电损耗和更好的频散效应

六叶形

在2~18GHz频率范围内,介电常数实部为4.37~10.76,虚部为2.03~7.21,介电损耗角正切值为0.46~0.79,磁导率实部为1,虚部为0

具有一定的频散效应,有利于对微波的吸收。

条形

在X波段,其介电常数实部为6.2~6.8,虚部为2.5~3.3,介电损耗角正切值为0.40~0.50,磁导率虚部为0,实部为1

具有较大的损耗角正切值,在X波段具有较好的电磁波吸收能力

备注:X波段是指频率在8~12GHz的无线电波波段,在电磁波谱中属于微波。而在某些场合中,X波段的频率范围则为7~11.2GHz。通俗而言,X波段中的X即英语中的“extended”,表示“扩展的”调幅广播。介电常数是媒质在外加电场时对外加电场的响应。从微观上看,就是形成了很多的电偶极子。其中虚部表征形成电偶极子消耗的能量。

3      
表面化学镀改性实现功能化    

表面改性实现功能化的一种有效手段,为实现SiC纤维的功能化,通过对SiC纤维表面进行镀镍和镀钴处理,可实现SiC纤维的表面改性。

a、镀镍实现SiC纤维功能化。将SiC纤维经过一系列处理后,在一定温度的次亚磷酸盐镀液中施镀,可实现SiC纤维表面镀镍。有研究发现SiC陶瓷纤维采用表面镀镍改性后,能够使吸波性能显著增强。通过控制化学镀工艺条件可制备出满足要求的功能材料,镀镍SiC纤维的红外消光性能显著提高,且在远红外波段其质量消光系数比未镀纤维显著提高,增至1.0m2/g以上。

b、镀钴实现SiC纤维改性。在SiC纤维表面镀钴及其铁钴合金并进行适当的热处理,不仅可以调节SiC纤维的电磁性能和降低其介电常数,还影响纤维的抗拉强度。

参考来源:

1、先驱体转化连续SiC纤维研究进展,国防科技大学航天科学工程学院,王浩,王军,宋永才,简科,邵长伟等着。

2、功能化碳化硅纤维研究进展,杨连,黎阳,洪流,陈璐,马龙,贵州师范大学材料与建筑工程学院。


来源:粉体圈


特别声明:公 众号部分文章和图片来源于网络,发布的目的在于传递更多信息及分享,并不代表本公 众号赞同其观点和对其真实性负责,也不构成任何其他建议。版权归原作者所有,任何组织或个人对文章版权或内容的准确性存在疑议,请第一时间联系我们,我们会及时修改或删除。

广告免责声明:为了公 众号稳定发展,本公众 号会不定时承接行业广告、产品推广、会议培训推广等广告展示方式有文章前/中/后以图片形式展示、软文展示、产品链接展示等。本公 众号只提供发布平台,对广告内容的真实性或有效性不做评价,请自行判别。所有广告内容及相关事项与本公 众号无关,特此声明。

来源:碳纤维生产技术
复合材料化学半导体通用航空航天冶金建筑电场材料创新方法控制
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-08-03
最近编辑:3月前
碳纤维生产技术
助力国内碳纤维行业发展
获赞 23粉丝 32文章 3739课程 0
点赞
收藏
作者推荐

聚焦ℱ解放军报:碳纤维-撑起大国重器的“小材料”

本文摘要:(由ai生成)美国研发出3D打印耐高温碳纤维聚合物技术,有望应用于航空航天发动机。碳纤维被誉为“黑色黄金”,因其优异性能广泛应用于国防军工等领域。碳纤维材料的研究和应用是大国竞争的焦点,具有广阔发展前景,将在航空制造等领域发挥重要作用,提升武器装备性能。日前,美国国家航空航天局与美国空军研究实验室联合研制出3D打印耐高温聚合物的新技术,未来有望应用于航空航天发动机,该技术使用的材料正是碳纤维。现代战争武器装备向着低能耗、大载荷、隐身化和高机动性快速发展,对制造武器的材料也提出了更高要求。被誉为“黑色黄金”的碳纤维复合材料,因其优异的材料特性而被广泛应用于国防军工等领域。借助碳纤维材料打造性能更优的武器装备,早已成为各军事强国比拼较量的新战场。令人着迷的“黑色黄金”还记得动画电影《超能陆战队》里的机器人“大白”吗?这个感动了无数人的医疗机器人的原型,体内骨骼正是由碳纤维材料打造,这才让外形软绵绵的他能经受住碾压摔打。事实上,就连此前曾经为超重问题所困扰的F-35战斗机,最终也是靠着使用多达35%的碳纤维复合材料才得以实现飞天梦想。被誉为“黑色黄金”的碳纤维,早已在国防军事领域得到广泛应用,是火箭、卫星、导弹、战斗机和舰船必不可少的基础材料。碳纤维的起源最早可追溯至1860年,英国人瑟夫·斯旺在制作电灯灯丝时发明了碳纤维并获得了专利。碳纤维真正迎来研究应用“井喷”阶段,还是20世纪50年代之后的事。1958年,美国研究人员首次发现了高性能碳纤维,日本和英国研究人员紧随其后,对碳纤维的性能进行改进升级。到20世纪70年代,碳纤维材料开始在战斗机结构件上崭露头角,F-15、B-1、F-16以及F-18等战斗机上都能看到碳纤维材料的身影。除美国空军的F-22和F-35战斗机大量采用碳纤维复合材料外,X-47B、“全球鹰”等装备更是借助碳纤维材料,实现了有效载荷、续航能力和生存能力的大幅度提升。用“坚如磐石、韧如发丝”来形容碳纤维材料毫不为过。别看碳纤维材料像纺织纤维一样柔软可加工,却是一种强度比钢大,且耐腐蚀、耐高温、导电导热性好的新一代高性能材料。人们平时接触最多的碳纤维材料自行车,就是借助了碳纤维材料没有塑性形变的特性,不但减轻了车身重量,更大大提升了自行车的使用寿命。目前,碳纤维复合材料的特性还存在着巨大的提升空间。在碳纤维材料重点研究的树脂领域,碳纤维的应用将进一步提升武器装备各部件的使用寿命,并将显著改善武器装备抗冲击韧性、耐疲劳损伤性、工艺性和耐湿热性。美国国家航空航天局和美国空军研究实验室实现的3D打印,更将进一步提升加工大尺寸、复杂零部件的可靠性。 大国竞争的“新材料之王”现代战争武器装备向着低能耗、大载荷、隐身化和高机动性快速发展,对制造武器装备的新材料技术提出了新的更高要求。回顾历史不难发现,碳纤维材料每次取得重大研究进展,都伴随着相关军事需求的有力牵引。20世纪50年代,为解决导弹喷管和弹头耐高温、耐腐蚀等关键技术难题,美国率先研制出了粘胶基碳纤维。此后,伴随着更高性能、更多品种碳纤维材料的出现,看似柔软的纤维也成了大国竞争的“新材料之王”。碳纤维是含碳量在95%以上的新型高性能纤维,制造技术难度大,是衡量武器装备系统先进性能的重要标志。碳纤维材料的制造工艺十分复杂,涉及化工、纺织、材料、精密机械等领域,是一项集多学科、精细化、高尖端技术于一体的系统工程。由于整个生产过程事关湿度、浓度、粘度、流量等上千个参数的高精度控制,稍有不慎就会严重影响碳纤维材料的性能和质量稳定性。因此,目前只有极少数国家能稳定生产出高性能碳纤维材料。事实上,碳纤维材料尤其是高强度碳纤维原丝,可用于高性能武器装备研制,因而在一些国家的出口清单上达到了与核武器技术相提并论的禁运等级。因此,研制新一代碳纤维材料以及更高性能的武器装备,就成了各军事强国比拼尖端实力的“重头戏”。目前各军事强国纷纷将目光锁定在“碳纤维材料”领域,竞相推出研发碳纤维材料相关计划,或将引发碳纤维材料研制的“群雄逐鹿”。美国国防部高级研究计划局此前就曾投入巨资用于改善碳纤维材料强度项目研究,美国国家航空航天局也积极投入新型碳纤维热防护系统研究。“上天下海”发展前景广阔伴随着相关技术的日渐成熟和武器装备需求的不断加大,碳纤维材料的应用也日趋完善。具备轻质、高强度、耐化学腐蚀等诸多优点的碳纤维材料,势必全面进军武器装备领域,实现“上天下海”,发展前景广阔。在航空制造领域,碳纤维材料的应用早已不可或缺。F-35战斗机飞行头盔主体就全部使用了高性能碳纤维材料,可将空速、航向、高度、目标信息和雷达警告等直接投射到头盔的面罩上,为飞行员提供了前所未有的态势感知能力。2015年开启全球飞行之旅的“阳光动力2号”太阳能飞机,整体结构的80%都采用了碳纤维材料做“保暖外衣”,在飞行过程中还节约出了更多的动力。除满足机体减重和特殊性能需求外,能有效吸收雷达波的碳纤维材料还为战机披上了“隐身外衣”。美国B-2轰炸机的机身和F-117A战斗机也都采用了碳纤维吸波材料。在无人机领域,碳纤维材料更成为无可替代的“最佳外壳”。为保证承载和续航能力,无人机外壳需要结构强度大、重量轻的特殊材料。相比于此前广泛应用的铝合金和工程塑料,碳纤维材料重量轻、强度高,还具有较好的电磁屏蔽和隐身特性,且一体化制作成型较为方便,未来势必成为无人机外壳的主要材料。尤其是由碳纤维制成、仅重106毫克的微型无人机,能进入遭受挤压的狭小空间搜寻信息,在军用民用领域都有着广泛的应用前景。碳纤维材料不仅能上天,还能下海。美国“福特”号航空母 舰就大量使用碳纤维材料来“瘦身”,瑞典皇家海军“维斯比”级隐形护卫舰采用碳纤维材料,不但具有很高的强度和耐用性,还具有优良的抗冲击性能。印度海军在制造“吉尔坦号”和“卡瓦拉蒂号”护卫舰时,也曾专门从瑞典进口碳纤维材料。此外,碳纤维材料也被大量应用于卫星、导弹和火箭发动机。尤其是卫星在太空飞行时面临“冰火两重天”,热膨胀系数几乎可以忽略不计的碳纤维材料恰恰是卫星的“拯救者”。研究人员甚至推出了一款碳纤维枪管,可大幅改善枪械的射击精度、耐用性和枪管寿命。一场属于碳纤维军事应用的“大戏”,才刚刚拉开帷幕。特别声明:公 众号部分文章和图片来源于网络,发布的目的在于传递更多信息及分享,并不代表本公 众号赞同其观点和对其真实性负责,也不构成任何其他建议。版权归原作者所有,任何组织或个人对文章版权或内容的准确性存在疑议,请第一时间联系我们,我们会及时修改或删除。广告免责声明:为了公 众号稳定发展,本公众 号会不定时承接行业广告、产品推广、会议培训推广等广告展示方式有文章前/中/后以图片形式展示、软文展示、产品链接展示等。本公 众号只提供发布平台,对广告内容的真实性或有效性不做评价,请自行判别。所有广告内容及相关事项与本公 众号无关,特此声明。来源:碳纤维生产技术

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈