本文摘要:(由ai生成)
东京理工大学的研究人员提出了一种新的设计方法,通过同时优化碳纤维增强塑料(CFRP)中纤维的取向和厚度,成功减轻了材料重量,同时保持其强度。该方法相比仅优化纤维取向的传统方法,实现了5%以上的减重效果和更高的载荷传递效率。这一发现为开发更轻质的飞机和汽车等高性能产品开辟了新道路。
碳纤维凭借其出色的强度/重量比而在航空工程应用领域受到欢迎。虽然人们在提高碳纤维复合材料如纤维增强塑料的强度方面作了很多努力,但却只考虑了对纤维取向的优化。现在,东京理工大学的研究人员们采用了一种新的设计方法来优化纤维的厚度和取向,从而减轻了增强塑料的重量,为开发更轻质的飞机和汽车开辟了道路。
碳对于所有生物的生存而言都至关重要,因为它是所有有机分子的基础,进而构成了所有生命的基础。虽然这本身就令人印象深刻,但是,随着开发出比钢的强度和刚性更好且重量更轻的碳纤维,近年来,航空航天和土木工程等领域出现了很多令人惊讶的新应用,这使得碳纤维取代钢材被应用于飞机、赛车和运动器材等高性能产品中。
碳纤维通常与其他材料结合形成复合材料,其中的一种复合材料是碳纤维增强塑料(CFRP),它以其高的拉伸强度、刚性和强度/重量比而出类拔萃。由于需求量大,因此,研究人员们开展了多项研究,以期提高CFRPs的强度,而且,他们将大多数的时间用在一项名为“纤维导向的设计(fiber-steered design)”的特殊技术研究上,这项技术可以优化纤维取向,从而提高强度。
但“纤维导向的设计(fiber-steered design)方法并非没有缺点,它只能优化纤维的取向,但却保持纤维的厚度不变,这极大地影响了对CFRP力学性能的充分利用。而一种同时也允许优化纤维厚度的减重方法却很少被考虑到。”东京理工大学专注于复合材料研究的Ryosuke Matsuzaki博士说道。
为此,Matsuzaki博士与其在东京理工大学的同事Yuto Mori 和Naoya Kumekawa一起,提出了一种新的设计方法,即根据在复合材料结构中的位置,来同时优化纤维的取向和厚度,这使得他们能够对比等厚度线性层压模型的重量,来减轻CFRP的重量,同时不影响其强度。发表在《Composite Structures》中的一篇新的研究论文介绍了他们的发现。
他们的方法包括3个步骤:准备、迭代和修正过程。在准备过程中,采用有限元方法(FEM)进行初步分析,以确定层数,通过一种线性层压模型和带有厚度变化模型的纤维导向设计(fiber-steered design)来进行定性的重量评估。迭代过程是根据主应力方向确定纤维取向,以及用“最大应力理论”来迭代计算厚度。修正过程是针对可制造性进行修正,这包括两步:首先,在需要提高强度的区域创建一个参考的“基础纤维束”;然后,按照纤维束分布在参考束两侧的形式排列纤维束,以此确定最终的取向和厚度。
与仅优化纤维取向的方法相比,这种同时优化纤维的取向和厚度的方法,实现了5%以上的减重效果和更高的载荷传递效率。
研究人员们对这些结果感到非常兴奋,并期待着今后能够通过实施自己的方法,来进一步减轻传统CFRP部件的重量。
来源:PT现代塑料
特别声明:公 众号部分文章和图片来源于网络,发布的目的在于传递更多信息及分享,并不代表本公 众号赞同其观点和对其真实性负责,也不构成任何其他建议。版权归原作者所有,任何组织或个人对文章版权或内容的准确性存在疑议,请第一时间联系我们,我们会及时修改或删除。
广告免责声明:为了公 众号稳定发展,本公众 号会不定时承接行业广告、产品推广、会议培训推广等广告展示方式有文章前/中/后以图片形式展示、软文展示、产品链接展示等。本公 众号只提供发布平台,对广告内容的真实性或有效性不做评价,请自行判别。所有广告内容及相关事项与本公 众号无关,特此声明。