近年来,工程材料中采用梯度结构设计用以满足各种应用的性能要求,已经引起了极大的关注。功能梯度材料(FGM)由两种或多种材料组成,其组成和/或结构沿单个或多个空间方向逐渐变化。作为一种典型的双金属FGM,316L/CuCrZr结合了铜合金优异的导电性和导热性以及316L的高强度和硬度的优点,广泛应用于电气、汽车和压铸行业。然而,通过传统方法制备FGM在尺寸精度和几何形状方面是不利的,例如粉末冶金、气相沉积、焊接和铸造。这些缺陷极难满足日益增长的应用需求。此外,界面微观结构是决定FGM力学性能的主要因素。316L和CuCrZr之间的结合可以在优化的工艺和/或使用中间层实现,但界面微观结构的设计缺乏。如何在316L/CuCrZr/FGM界面引入梯度微结构以改善其性能是值得考虑的。
Graphical abstract
在结合过程中,Fe-Cu合金体系不可避免地存在于316L/CuCrZr-FGM界面。一些研究表明,由于Fe-Cu包晶不混溶合金的密度差异,其微观结构和凝固行为对凝固速率非常敏感。在低冷却速率下,合金中发生的严重宏观偏析和分层会使其性能恶化。然而,由于抑制了宏观偏析,Fe-Cu合金可以在高冷却速率提供的浓度场和温度场的相互作用下形成特殊的微观结构。基于此,使用快速凝固技术实现316L和CuCrZr的结合不仅将形成梯度材料,还可能在界面处引入梯度微观结构。
因此,人们不得不使用具有高冷却速率(~108K/s)的激光粉末床熔化(LPBF)来实现316L和CuCrZr的结合。作为一种金属增材制造技术,LPBF不仅可以实现几何复杂零件的制造,以克服传统工艺的缺陷,更重要的是,它可以通过利用高冷却速率实现界面区的微观结构设计。在该研究中,使用LPBF实现了316L和CuCrZr合金的结合,图1展示了增材制造样件及相应的界面显微组织结构及示意图。
通过LPBF制备了具有晶粒尺寸梯度和双尺度非均匀组织的316L/CuCrZr FGM。沿BD方向的晶粒尺寸梯度结构为微米级柱状晶粒、超细等轴晶粒和微米级柱形晶粒。在样品中形成了双尺度的非均匀微观结构,即纳米尺度的α-Fe颗粒沉淀在β-Cu相基体中,超细α-Fe晶粒分散在超细β-Cu晶粒区中。独特微观结构的形成机制可归因于相分离、小的临界过冷度、大的组成过冷度以及共析反应的发生和固有热处理。这种独特的晶粒尺寸梯度和双尺度非均匀微观结构确保了316L/CuCrZr FGM的优异剪切和拉伸强度。
论文链接:
https://doi.org/10.1016/j.scriptamat.2022.115197