首页/文章/ 详情

涡耗散概念(EDC)模型模拟甲烷燃烧(点火过程)

5月前浏览4385
正文共:2444字 23图    预计阅读时间:7分钟
1 前言
燃烧是一种复杂的物理过程和化学过程的综合,它既有流动、扩散、混合等物理现象,又有氧化还原反应并放出光和热的化学现象。通常来讲,燃烧可以分为扩散燃烧和预混燃烧,燃料和氧化剂分开独自进入燃烧区域,边燃烧边扩散混合的过程称为扩散燃烧,这种燃烧类型很常见,比如燃气灶、打火机,扩散燃烧相对稳定,好控制,在易燃易爆场合出现泄漏事故时,如果第一时间能点燃形成扩散燃烧,风险相对还小一点;倘若点火之前,燃料和氧化剂已经在分子水平上混合,这种燃烧类型称为预混燃烧,这种燃烧通常会更完全彻底,同时也是相对更危险的,因为所有燃料的浓度都处在燃爆极限范围,很多爆炸事故都属于这种类型,预混燃烧不稳定,不好控制。
燃烧的模拟是一项难度非常大的工作,而且通常都不会很准确,在工程上可能作趋势分析更有意义。各位读者若要进行燃烧模拟,需要对流动(层流&湍流)、传热(包括辐射)、组分输运、甚至相变等基本的模拟要熟悉。在模拟燃烧与化学反应前,我们需要了解一个无量纲数——Damkohlar数(简称Da数),它用来表征化学反应的快慢。Da数等于反应速率与混合速率的比值,或者等于混合时间尺度τF和化学反应时间尺度τC的比值(如下图)。Da数大于1,表征的是快速化学反应,Da数小于,表征的是有限速率(慢速)化学反应,燃烧是一种典型的快速反应。
快速化学反应其化学反应过程受湍流混合过程控制,因此对湍流过程的模拟是快速化学反应模拟的基本前提。慢速化学反应其化学反应过程与湍流相互控制(耦合),因此选择合适的反应机理很重要,比如污染物形成、点火与熄火、化学气相沉积(CVD)等场合。
FLUENT处理燃烧问题,可采用如下五种模型:其中Species Transport(通用有限速率模型)求解反应物和生成物的输运组分方程,并由用户来定义化学反应机理。反应速率作为源项在组分输运方程中通过阿累纽斯(Arrhenius equation)方程或涡耗散模型得到。该模型无论在层流模型还是湍流模型下,都可以选择。剩下的四种专门的燃烧模型,必须启动湍流模型才能选择。接下来,我们会依次对FLUENT的燃烧与化学反应模型进行相应的演示。
今天,我们用涡耗散概念(EDC,Eddy-Dissipation Concept)模型来模拟甲烷的燃烧。EDC模型是一种慢速反应模型,是ED模型的扩展,允许在湍流中考虑详细的化学机理。该模型是最为精确和细致的燃烧模型,它假定化学反应都发生在小涡中(精细涡),反应时间由小涡生存时间和化学反应本身需要的时间共同控制。该模型能够在湍流反应中考虑详细的化学反应机理。但是从数值计算的角度,则需要的计算量很大。因此,对于EDC模型,通常只有在快速化学反应假定无效的情况下才能使用(如低温或高压燃烧、快速熄灭火焰中缓慢的CO烧尽、选择性非催化还原中的NO转化问题等)。同时,推荐在该模型中使用双精度求解器,可以有效避免反应速率中产生的误差。EDC模型反应速率计算采用的是有限速率模型,组分i的源项是所有参与反应的组分源项之和。反应速率根据阿累尼乌斯公式计算,需要知道指前因子Ar、活化能Er,温度系数βr,FLUENT自带的一些反应混合物具有了这些值,也可以通过导入Chemkin反应机理文件,里面有大量的化学反应式和相关参数。

2 建模与网格
创建如下的二维轴对称燃烧器模型,其中心位置为甲烷入口,周围环形为空气入口。划分四边形结构化网格,节点数14820,最小正交质量0.9。
3 边界条件与求解设置
采用二维轴对称(带旋转)模型,该模型还可以考虑旋流,很多燃烧器的空气进气都会考虑一定的旋流以强化混合。
采用默认的SST k-ω湍流模型。
启用EDC模型,混合物我们采用FLUENT默认的甲烷空气(单步反应),组分如下图,氮气组分含量最高,放在最后。
我们看一下化学反应式,即甲烷燃烧单步反应式,EDC模型的关键参数指前因子Ar、活化能Er,温度系数βr我们采用默认即可,另外本案例我们不考虑逆向反应。
混合物的物性参数如下,燃烧涉及到高温,采用定常物性参数是不合适的,特别注意一下默认的密度模型是不可压缩理想气体,我们改为理想气体模型,这对于模拟燃烧的压力波动对密度的影响是有利的,特别是点火和爆炸模拟,当然在本案例中是没有太大必要。对于燃烧问题,通常还需要考虑辐射换热,燃烧产物有大量的CO2和H2O,气体的吸收系数需要考虑,利用WSGGM计算,并开启Domain-based更为合适,本案例为了简化计算,暂不考虑辐射换热。甲烷的层流火焰速度设置为0.2m/s。
空气入口边界设置如下,轴向速度5m/s,旋转速度5m/s,温度300K,组分为23%O2和77%N2(最后组分不显示)。
甲烷入口边界设置如下,速度20m/s,温度300K,组分为100%甲烷。
中心线为轴对称边界,壁面为绝热无滑移壁面,出口为压力出口,表压为0Pa,回流组分为空气组分(23%O2和77%N2)。
按如下值设置亚松驰因子,对于燃烧模拟,减小亚松驰因子是非常有必要的,是改善收敛效果的最佳手段。
残差收敛标准中能量改为1e-7,其他默认。
4 计算结果
稳态迭代残差曲线如下,效果良好。
我们先看一下燃烧腔内温度分布,可以看出反应没有启动。
此时,我们可以改用瞬态计算,并利用FLUENT的点火功能来执行点火启动燃烧反应。启动火花点火(Spark Ignition),并在燃烧腔内适当位置(建议燃爆极限范围内)创建火花,设置点火时刻、持续时间、点火能等,需要指出的是计算域内某个点混合物的点火更依赖于当地组分,而非点火能,也就是说这个点火能的值设定可以不用太讲究。
瞬态求解,时间步长0.001s。
对于燃烧问题的瞬态求解,能量和质量守恒是判断是否达到稳态的关键。
能量报表如下,对于燃烧问题,由于燃烧热的存在,采用Total Sensible Heat Transfer Rate对总能量流进行积分。
质量报表如下,不平衡率很小。
燃烧腔内的温度、甲烷浓度、水蒸气浓度、二氧化碳浓度如下图,可以看出出口还有不少的甲烷没有燃烧掉,计算结果总体上与ED模型结果一样。
来源:仿真与工程
FluentChemkin燃烧化学组分输运湍流通用爆炸
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2023-12-02
最近编辑:5月前
余花生
签名征集中
获赞 164粉丝 253文章 273课程 0
点赞
收藏
未登录
还没有评论

课程
培训
服务
行家

VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈