摘要
本文基于10kHz的S-PIV和OH PLIF同步测量数据,采用谱本征正交分解(spectral proper orthogonal decomposition, SPOD)和瞬态线性稳定性分析(Transient Linear stability analysis, TLSA)方法研究了旋流火焰在发生间歇性形状转换时的进动涡核(Precessing vortex core, PVC)动力学。基于SPOD的时频分析,发现PVC在冷态和火焰抬升时出现,而在火焰附着时消失,且PVC的生长/衰减先于火焰发生抬升/再附着。采用TLSA方法很好地预测了火焰发生抬升之前PVC的绝对增长率和频率。TLSA结果表明:PVC的增长对应于流动由对流不稳定转变为绝对不稳定,是由对流扰动和粘性扩散扰动的连续抑制所引起,而后续流动的绝对不稳定则仅由对流扰动的抑制所维持。
燃气轮机燃烧室的稳焰是实现燃烧室高效、安全燃烧的前提条件,而稳焰模式的直观体现,便是火焰的形状。在燃烧室内,火焰的形状会随着工况的剧烈变化而发生改变。但是,在某些情况下,即使燃烧室入口工况保持固定,火焰的形状也会出现自发性、间歇性改变。这种动态改变容易导致熄火、回火、以及燃烧室硬件的热负荷波动,危害燃烧室的安全运行,因此其物理机制受到了广泛的研究和关注。
现有的研究表明:抬升的M形火焰与附着的V形火焰之间的动态转变和流场中大尺度相干结构(即PVC)的间歇性生成和抑制紧密相关。在火焰发生抬升之前,PVC形成并在火焰根部产生大的应变率而引起局部熄火,火焰最终在根部由附着变为抬升。但是,上述结果基本是定性的认识。同时,在火焰由稳定附着到发生抬升之前,是什么触发了PVC的形成并不清楚。为了解决上述两个问题,本文基于10 kHz的OH-PLIF和S-PIV同步测量数据,采用SPOD和TLSA进行了研究。
2.2 实验方法
本研究的实验系统如图 1所示。图1(左)的燃烧器限制域长117mm,宽85mm,旋流器的旋流数为0.55。图1(右)给出了激光诊断系统,S-PIV和OH PLIF的测量在10kHz的重频下同步进行,每组数据采集15000张瞬态OH图像和速度场。
实验在常温常压下进行,燃料为甲烷,在燃烧前与空气完成预混。空气的流量为240L/min,混气当量比为0.66,该工况下火焰会在附着和抬升之间进行自发的动态切换,如图2所示。
图 1 实验系统图
图2 火焰经历稳定附着、动态抬升、稳定抬升、动态附着的瞬时OH PLIF动画
图3 瞬时的OH PLIF场叠加瞬时速度场
图4 SPOD的模态能量谱(a,c)和时频能量谱(b,d)。(a)和(c)为冷态流场,(b)和(d)为热态流场