导读:电机作为驱动系统的核心,直接影响着电动汽车的动力性能。纯电动汽车使用的永磁同步电机具有很高的功率密度,由此引发严重的温升问题,影响电机的工作效率、运行性能以及使用寿命,因此必须将电机温升控制在合理范围内。
驱动电机是一种将电能转换为机械能的部件,能量转换过程中会存在一些以热为表现形式的损耗,而这些热则会作用于电机各部件,使各部件温度升高。电机温升是由电机发热造成的电机与环境的温度差,电机的效率是电机的一大重要指标,而电机效率与电机温升是两个关联性及其紧密的参数。除却在设计过程中减少电机各部分损耗,降低电机温升也是提升电机效率的一个较为有效的措施。而电机长期温度过高,也会对电机产生不可逆的严重危害,会导致磁石结构变形、退磁和绝缘材料失效等。但电机温升计算较为复杂,因电机工况复杂多变,且其不仅涉及电机学,还涉及传热学、空气动力学、流体力学等交叉领域。
在控制电机温升提高电机效率的问题上,目前可以采用两种方法:一种是通过合理设计降低电机各项损耗,另一种则是采用高效的冷却系统,达到有效降低电机温升的目的。冷却系统是由冷却管道、添加到冷却管道用来促进冷却的各个组件、流经冷却系统的冷却液组成。
根据冷却形式不同可分为风冷冷却和液冷冷却,液冷冷却结构电机,是目前选用较多的一种冷却方式,国内外学者均对液冷结构开展了许多研究。液冷结构的设计中比较重要的一部分就是冷却回路的设计,高效的冷却回路设计可以缩短冷却时间,提高效率。
在新能源汽车领域,汽车的电动机具有功率密度大、体积小型化的特点,但也因工作环境封闭,导致发热问题严重,需要额外冷却流道强制对流散热来保证电机可靠的运行,电机散热成为电机结构设计的重要内容。
新能源汽车的电动机面临两大问题:
一是模拟电机多相流冷却非常耗时,多相流仿真需要较小的时间步长和数百转才能达到统计的稳定状态;
二是固体温度的模拟需要更长的时间尺度(数分钟),使用瞬态方法直接模拟几乎是不切实际的。
因此在液冷电机的仿真中,需要提高仿真效率。
为解决上述问题,提供了一种激进的瞬态仿真方法,采用混合多相流方法(MMP)结合大尺度交界面检测 (LSI) 模型,加速固体热扩散方法进行液冷电机的仿真。
混合多相 (MMP)模型适用于离散多相混合物建模,其中相混合由加权物理属性表示。可以将混合物的一组质量、动量和能量守恒方程进行求解,并求解相体积分数的传输方程。大尺度交界面检测 (LSI)模型可检测包含相间大交界面的网格单元组。通过使用大尺度交界面检测(LSI)模型,MMP的功能不仅扩展到对混合物建模,还能对分层流体建模。这两种模型的组合也称为MMP-LSI,可以捕捉不同的共存流区域,如自由表面流、离散液滴和离散气泡。MMP相间相互作用不需要固定离散相和连续相。在计算域的某些部分,主相可以离散,而在另一部分,次相也可以离散。MMP-LSI可用于模拟蒸发器、石油管道或核应用等CFL数较高的多相应用,即允许在相交界面附近使用更大的时间步和更粗糙的网格,而不会影响工程物理量(例如扭矩)的结果精度。
电机模型如图(电机模型由西门子工业软件提供),电机包含转子轴、转子铁芯、转子磁钢、静子外壳、静子线圈、静子铁芯。模拟开始时,油相通过轴上的孔,从轴的中心进入电机内部;在电机内部,转子快速旋转会产生油滴和气泡的混合物,油和空气建模为不可压缩液体和气体,多相混合物使用MMP-LSI通过自适应界面锐化(ADIS)方案对清晰的交界面进行建模。因此,油的体积分数将动态演示油-空气交界面的瞬态演变,在转子的影响下形成的分层流和离散流。
电机模型
在进行油冷电机仿真时,使用旋转参考框架,尽量不要把旋转域与静止域的交界面设在空气间隙的中间,如果转子表面有槽,则可以把交界面设在空气间隙的中间,否则最好设在转子的外表面。如果可能,避免交界面平行与旋转轴,在固体转子和静止空气的交界面上使用周向热流平均模型。
为加速固体热扩散,可以将热扩散系数设为较高的值,以减少达到稳定状态所需的物理时间,这里可以将固体的密度设置为一个非常小的值来实现;固体密度不要使用太大的值,值越大固体达到热平衡的时间越长;密度越低,对温度的响应时间越快,可以将计算密度设为实际密度的1/1000,可以得出合理的结果,如果密度太小,则会产生不合理的峰值噪音。
1.模型处理。首先对电机模型进行处理,划分电机边界,建立交界面。
2.建立区域。由于电机模型十分复杂,在建立计算区域时,可将一个区域对应多个几何。
3.建立网格。分别对流域和固体域建立网格,对小面、多相流区域进行加密。
4.建立物理模型。分别建立多相流模型、液冷流体模型、固体模型,对固体密度进行缩放,以加速固体热平衡。
5.计算求解。由于采用混合多相流模型,计算求解时间步长可设为每个时间步电机转动3到10度。
计算完成时,分析液冷电机的温度和油的体积分数。
可以看到电机的铁芯处温度较高,在喷油位置温度较低。
电机温度
分析油的体积分数。油从转轴内部和静子的喷油口进入,对电机进行冷却后从底部的排油口流出。
油的体积分数
采用混合多相流方法(MMP)结合大尺度交界面检测 (LSI) 模型,加速固体热扩散方法进行液冷电机的仿真,允许在相交界面附近使用更大的时间步和更粗糙的网格,能加速仿真进程,使液冷电机的仿真能够工程应用化。
近日,我在仿真秀官网发布了视频教程《Star-CCM 新能源汽车液冷电机热仿真13讲》。它提供了一种激进的瞬态仿真方法,采用混合多相流方法(MMP)结合大尺度交界面检测 (LSI) 模型,加速固体热扩散方法进行液冷电机的仿真。以下是课程安排
扫码立即试看
1、用户得到
(1)学习STAR-CCM 计算流程,
(5)本课程为学员提供知识圈答疑和订阅用户交流群,内容还可以根据用户需求可酌情加餐视频内容。
(1)学习仿真工程师
(5)从电机热管理的工程师
(完)