南京工业大学联合西北有色金属研究院多孔金属材料国家重点实验室在 Journal of Materials Research and Technology 杂志(材料科学1区Top期刊)上发表文章 Fe nanoparticles modified pure Ti alloy on microstructure evolution and fine crystallization mechanism fabricated by additive manufacturing。
微合金化是细化纯钛合金晶粒尺寸、提高增材制造纯钛合金性能的有效途径。通过激光熔化沉积(LMD)制备的纯Ti、Ti- 2Fe (wt.%)和Ti- 4Fe (wt.%)合金的晶粒尺寸、取向关系和力学性能进行了比较。Ti- 4Fe合金的平均晶粒尺寸为220µm,明显低于纯Ti和Ti- 2Fe合金,平均晶粒尺寸为442.3µm和319.6µm。前者的超构性过冷是晶粒尺寸减小的原因。α相的取向受Fe固溶体的影响,较大的Fe含量导致α相倾向于(0 0 0 1)方向生长。此外,铁的加入使屈服强度和抗拉强度均有显著提高,分别达到798 MPa和880 MPa。这种强化是由铁原子的细晶强化(54.4%)和固溶强化(45.6%)共同作用的结果。
图2 设备图
图3 Ti-Fe合金的宏观形貌和晶粒尺寸分布
图4 XRD谱图
图6为不同Fe添加量下Ti-Fe样品中元素的分布。从图6(a)和图6(b)的背散射电子图像中可以看出,沉积物中没有明显的β相。这是由于在增材制造过程中,在103~106 K/s的高冷却速率下,β-相还没有来得及长大就转变为α-相。即在增材制造的快速凝固过程中,溶质在偏析之前已经凝固,导致β相尺寸呈发际线状,扫描电镜无法捕捉到Journal Pre-proof。分析了Ti- 2Fe和Ti4Fe矿床中Ti和Fe元素的分布。结果表明,Fe元素在Ti基体中扩散,而不存在于β相的固溶体中。
利用EBSD分析探讨了铁含量对晶粒取向和织构的影响。图7为纯Ti、Ti- 2Fe和Ti- 4Fe矿床中α相的EBSD逆极图(IPF)。如图7(a)、(b)、(c)所示,不同铁含量的晶粒取向有显著差异。具体而言,α-Ti相的晶粒取向较为均匀,在纯Ti矿床中主要由[0001]和[11-20]取向组成。随着铁含量的增加,α-Ti相的晶粒取向逐渐多样化。相反,当铁含量增加到4 wt.%时,晶粒取向变得更加复杂,表现出明显的各向同性。此外,铁含量对α-相晶粒取向有明显的选择性。随着Fe含量的增加,α-相的晶粒取向趋于集中,各向同性趋于明显。图7(d)、(e)和(f)为EBSD获得的纯Ti、Ti- 2Fe和Ti- 4Fe合金α相尺寸和长径比统计。结果表明,纯Ti沉积层α-板条宽度和长径比分别为7.5µm和2.5,Ti- 2Fe沉积层α-板条宽度和长径比分别为5µm和3。但是,当Fe含量增加到4 wt.%时,α-板条的宽度和长径比分别显著减小到2µm和2µm。α-板条宽度和长径比随铁含量的增加而减小。为了进一步量化α/β相组成和α相的平均晶粒尺寸,进行了SEM-EBSD分析。我们的基体合金具有独特而均匀的微观结构,具有编织形态,适用于增材制造。结果表明,随着铁含量的增加,α相的晶粒取向更加多样化。当合金在增材制造过程中迅速冷却时,它经历了钛的固态相变,并通过α V变异体选择。这一过程导致织构强度减弱,晶粒取向单一,从而消除了纯Ti α晶粒在这些条件下的优先生长。相反,在凝固过程中,Ti-xFe沉积层的形核数量显著增加,从而导致α相织构中由于铁含量的增加而优先取向。
图6 EBSD逆极图(IPF)及α片层宽度和长径比的分布
总结了不同含铁量的Ti-xFe合金的拉伸性能和力学性能。图9(a)是典型拉伸试验得到的一组拉伸曲线,从图中可以看出,不同铁含量的加入导致了拉伸强度的显著差异。Ti4Fe合金的最大抗拉强度值明显优于纯Ti和Ti- 2Fe合金。此外,通过塑性变形阶段曲线的斜率可以发现这些合金的弹性模量是近似的。图9(b)为3次独立拉伸试验和40次标准偏差显微硬度试验的平均值。
纯Ti合金的平均抗拉强度和屈服强度最低,分别为790.5 MPa和602.3 MPa。而Ti-2Fe合金的屈服强度分别为792 MPa和680 MPa,屈服强度比约为0.86。虽然Ti-4Fe合金的力学性能略有提高,但其平均抗拉强度提高到880 MPa,屈服强度提高到798 MPa,屈服强度比为0.91。
此外,Ti- 2Fe合金的伸长率较高,达到27%,而纯Ti的伸长率仅为5%。由于强度的提高,Ti-4Fe合金的伸长率略有下降,约为23%。两种合金的显微硬度如图9(b)所示。纯Ti、Ti- 2Fe合金和Ti- 4Fe合金的平均显微硬度分别为263.2HV、269.7HV和306 HV。总体而言,随着Fe添加量的增加,合金的强度增加,塑性降低。
为了描述不同铁含量的Ti-Fe合金的断裂形貌,图10为合金拉伸断裂后的扫描电镜图。组图的上半部分显示的是骨折的低放大照片,而下半部分显示的是代表性区域的放大视图。在低倍照片中,所有样品都表现出颈缩现象,且颈缩程度随着铁含量的增加而逐渐减小。随着铁含量的增加,解理区域的面积增大。所有合金的断口均表现出韧窝和解理特征,显示出延性断裂行为。
在高倍显微镜下观察断口形貌,发现Ti-2Fe合金表面的韧窝深度明显比其他样品深。这一发现与宏观性能结果一致,说明拉伸后伸长率更高。当与Ti-4Fe合金的整体断口表面进行比较时,可以注意到,形貌的某些部分显示出更大,更光滑的表面,类似于解理步骤,可能是由于合金的强度增加。此外,通过研究不同铁含量合金的断口韧窝尺寸,发现铁的加入使合金的晶粒尺寸和断口韧窝尺寸减小,最终表现出优异的抗拉强度。
图9 工程应力应变曲线
图10 Ti-Fe合金拉伸试验后断口表面
增材制造钛的凝固过程受固液界面温度梯度G和凝固生长速率r这两个关键热力学参数的影响,通常利用这两个参数的比值来评价晶粒形成过程,并推断新晶粒成为等轴晶的可能性。较低的温度梯度G和较高的生长速率R有利于等轴晶的形成。然而,液体凝固过程的过冷度是由液态凝固温度(Tfreeze)和固液界面处的实际温度(Tliquid)决定的。当Tfreeze大于Tliquid时,构件会出现过冷现象。最重要的特性参数是组件过冷度(∆Tcs)和组件过冷区宽度(∆Dcs)。图12为Ti-2Fe和Ti-4Fe合金的晶粒形核和长大机理。
Ti-2Fe合金的过冷成分非常小,这使得在固液界面处的过冷液中很难形成新的晶核。因此,它只能通过先前沉积层中的晶粒的外延生长来生长,从而导致柱状晶体为主的结构。然而,Ti-4Fe合金的成分过冷度和晶粒生长速度显著提高,使得在过冷区形成新的晶核成为可能。随着ΔDcs的增加,成核点数量增加,新形成的晶核以竞争生长的方式生长,形成等轴结构。
XRD结果表明,Ti-2Fe的β相分数含量为8.97%,Ti-4Fe的β相分数含量为14.35%。结果表明,随着Fe添加量的增加,β相分数含量增加。已有研究表明,钛合金的固态转变动力学和微观组织演化与合金制备过程中的冷却速率密切相关[34-36]。例如,对于Ti-6Al-4V合金,如果从相变点以上以一定的速度冷却,当其冷却速度大于410 K/s时,将获得完整的α′-马氏体。当冷却速率为20~410 K/s时,可得到α+β片层组织和α′马氏体组织的混合组织。当冷却速率低于20 K/s时,形成完整的α+β片层。
在本研究中,激光熔融沉积增材制造工艺的冷却速度非常高,可达到103~106 K/s。因此,对于增材制造后的样品,在制备过程中金属粉末完全熔化,元素重新分布,而在凝固过程中冷却速度极高。β稳定元素在聚集前完全凝固,使凝固后β稳定元素在基体中均匀分布。β相不足以稳定到室温,在固态相变点后转变为更稳定的α/α′相。类似的结果也可以在其他一些α和α+β钛合金中发现,如Ti-6Al-4V和Ti-6Al-2Sn-4Zr2Mo。
用EBSD法计算出Ti-2Fe合金的α相厚度为5µm, Ti-4Fe合金的α相厚度为2µm。由式(1)可知,HallPetch强化引起的屈服强度力学约为64.22 MPa。但由于没有中间析出相,Orowan强化可以忽略不计,强度的提高主要来自细晶强化和固溶强化机制。应力-应变曲线计算表明,Ti-4Fe合金的屈服强度比Ti-2Fe合金高118 MPa,其中除α-Ti相细化外,β-Ti相中铁原子固溶带来的强度预防提高幅度为53.78 MPa。一般来说,晶粒尺寸决定了合金的机械性能。晶粒尺寸越小,性能水平越高。随着铁含量的增加,Ti-xFe合金的晶粒尺寸减小。拉伸强度也随铁含量的增加而增加。与Ti-2Fe合金相比,Ti-4Fe合金的伸长率降低,主要是由于固溶元素的增加导致结构缺陷的增加。因此,塑性降低。
将CP-Ti(53~150µm)和Fe (0~100 nm)粉末进行机械混合,制备了纯Ti和新型Ti- xFe镀层。采用SEM、EBSD和XRD分析了材料的显微组织、织构强度和力学性能。研究了铁添加量对合金组织转变、织构选择和性能改善的影响。
主要研究结果如下:
(1)与纯Ti相比,随着Fe的逐渐加入,Ti- 2Fe和Ti- 4Fe合金的平均晶粒尺寸减小;具体来说,柱状晶粒的存在导致纯Ti沉积层的平均晶粒尺寸为442.3µm,而对应的Ti- 2Fe和Ti- 4Fe沉积层的平均晶粒尺寸下降幅度更大,分别为319.6µm和220µm。随着Fe含量的增加,α-板条的平均尺寸从7.5µm减小到2µm。这些数据表明,随着铁含量的增加,合金中的晶粒等轴化程度变得更加突出。
(2)纯Ti、Ti- 2Fe和Ti- 4Fe合金织构取向存在显著差异。结果表明,铁元素的固溶体对α相取向有一定的选择性。随着固溶体中Fe含量的增加,α相的优先生长方向更倾向于(0001)方向。
论文链接:
https://doi.org/10.1016/j.jmrt.2023.08.221