一般加速的时候,以发动机曲轴转速为基准,以频率为横轴,以转速为纵轴的阶次线是一条条斜线。 此外,在分析其他旋转部件产生的振动噪声时,为了方便,可以将其转频定为基频,这里以传动轴为例,比如减速器的输入轴,传动比为10。可以测试传动轴的转速,再以测出输入轴的转速作为基准进行阶次分析。 模态的阶次是指其第X阶固有频率;通过模态计算可以确定系统的固有频率(比如分15/23/30Hz)、阻尼系数、模态振型;每一个固有频率都会对应一个模态振型图。
空间阶次:这里指电磁力(或正比于电磁力的磁密)空间分布的谐波分量。 如图所示,在瀑布图上可以清晰地看到,有从原点出发的辐射状亮线,这是电磁引起的噪音,它们在瀑布图上呈现出过原点的明亮射线。
那些垂直于横轴(频率轴)的亮线即为固有频率线,由于固有频率与转速无关,无论转速多少其振动频率都为恒定值,因此,这些垂直于横轴的亮线就是结构的各阶固有频率线,在这些亮线上的运行点,其振动噪声主要是结构的固有振动特性引起的。
当然在变频电机的瀑布图上还有一些垂直于横轴的亮线以及在其两侧呈伞状分布的“伞状阶次线”,这是由于变频器的载波频率及其与基波各次谐波的调制频率呈现出的伞状阶次线。
如果是共振引起的噪声,通过振动传感器传出来的数值找出哪个部件,然后进行模态与动刚度分析,找到设计薄弱点进行加强。 如果是电磁引起的噪声,噪音会从定子传递到电机壳体,这时候需要加强定子与壳体的动刚度。从控制器来讲,增加谐波注入可以缓解低速下的电磁噪音(缺点是降低了电磁力) 如果是控制器开关频率引起的噪声,需要分析是在哪个速度区见的噪声不合格对应的提高该速度段的开关频率 说明:图文来自NVH百科及电机产品技术网络等,仅限交流学习