金属玻璃具有独特的短程有序和长程无序原子结构,具有优异的机械性能。然而,两个主要障碍阻碍了金属玻璃在结构应用中的使用:一个是金属玻璃的尺寸受到玻璃形成能力和制造过程中对高冷却速率的要求的限制;另一个是由于缺乏应变硬化、固有剪切带和裂纹屏障,室温下的宏观塑性较差。
试验方案
结果与讨论
尽管有一些未融合的粉末和微孔,但在BMGC沉积物中没有观察到裂纹(图1A、B)。XRD结果显示出明显的无定形扩散峰,以及由β相和一小部分(Ti,Zr)2Cu相组成的结晶相(图1C)。
BMGC样品主要有两种显微结构(图2A)。在熔池的中心区域,非晶相和β相的平均宽度相对较小(表1)。微观结构细密,β枝晶排列呈沿熔池中心定向生长(图2B)。无定形相分散均匀,并呈现出不同的形貌,如球体、细长球体和网络(图2B)。在熔池的边缘区域和多个熔池的重叠区域,非晶相呈现出更粗糙和更连续的网络(图2C,D)。精细和粗糙微观结构中非晶相的体积分数分别为18%和21%。非晶相和β相的平均宽度分别低于0.4和1.2μm。与使用传统技术制备的微观结构相比,通过SLM制备的原位β相增强Ti/Zr基BMGC的细小和粗大微观结构都更精细,这是由于SLM制造过程中更高的冷却速率。
在熔池的中心区域,当使用激光照射元素粉末时,温度迅速上升到熔点a以上(图2G),并形成液相(图2H,o-a,a)。当温度下降到结晶点c时(图2G),在过冷液相中形成大量β相晶核(图2H,c)。随着温度从c点到d点的进一步降低(图2G),β相枝晶在熔池中沿温度梯度方向生长(图2H,c-d)。由于SLM熔池中的高温梯度和液固界面速度,枝晶臂可以显着细化。到达点d(图2G)后,β相可以聚结形成连续的网络,剩余的过冷液相均匀分散,具有不同的形态,例如球体、细长球体和网络(图2H,d)。当温度下降到玻璃化转变点e(图2G)时,这种残留的过冷液相转变为非晶相,从而产生更精细的微观结构(图2H,e)。
论文链接:
https://doi.org/10.1016/j.scriptamat.2019.06.007