一、循环伏安技术
测试原理
ip——峰电流;
C0——氧化态反应物浓度;
测试方法及步骤
数据分析
循环伏安测试对研究锂离子电池在充放电循环中电极反应过程和可逆性至关重要。以两种典型的正负极材料为例,图 1为由电化学工作站测试得到的 CV曲线。图 1(a)为钨表面改性的镍钴锰三元正极材料首圈、第 5圈和第 10圈的 CV 测试图,电压范围在 3~4.5 V,扫描速率为 0.1 mV/s,从测试图中可以看到材料在循环过程中有很好的可逆性,除首圈电极表面和电解液发生反应形成SEI膜以后,后面的循环过程中曲线几乎完全重合。其实可以看到出现在 3.8 V的氧化峰和 3.7 V的还原峰,对应的分别是 Ni2+/Ni4+的氧化还原过程。可以看到曲线没有其他峰,说明了改性材料在此电压区间的电化学稳定性。图 1(b)为常见的硫化钼负极材料的CV曲线,电压范围 0.01~3 V,扫描速率 0.1 mV/s。CV曲线也有利于分析锂离子电池复杂的电极反应过程,在首圈循环中,0.9 V和 0.4 V 的还原峰对应锂离子插入到硫化钼中将LixMoS2还原为Mo和Li2S, 1.8 V和 2.3 V 的两个氧化峰对应 Li从 Li2S中的脱出,而在第二圈循环中新的还原峰的出现表明硫化钼发生了不可逆的相转变。
然后即可计算出各个电压值的电容电流 k1v,可以得到总的电容贡献,如图 2(c)所示,赝电容效应对复合隔膜锂离子电池贡献率达到了 43.59%,这有助于锂离子电池在高电流密度下实现快速的电荷存储,从而呈现出快速的锂储存和高容量。
二、电化学阻抗技术
【测试原理】
目前描述电化学嵌入反应机制的模型主要有吸附模型 (adsorption model) 和表面层模型 (surface layer model)。一般采用表面层模型来描述锂离子在嵌合物电极中的脱出和嵌入过程。表面层模型最初由Thomas等提出,分为高频、中频、低频区域,并逐步完善。Barsoukov基于锂离子在单个活性材料颗粒中嵌入和脱出过程的分析,给出了锂离子在嵌合物电极中嵌入和脱出过程的微观模型示意图(见图 3),认为锂离子在嵌合物电极中的脱出和嵌入过程包括以下步骤:
1)电子通过活性材料颗粒间的输运、锂离子在活性材料颗粒空隙间的电解液中的输运;
2)锂离子通过活性材料颗粒表面绝缘层(SEI膜)的扩散迁移;
3)电子/离子导电结合处的电荷传输过程;
4)锂离子在活性材料颗粒内部的固体扩散过程;
5)锂离子在活性材料中的累积和消耗以及由此导致活性材料颗粒晶体结构的改变或新相的生成。
测试方法及步骤
数据分析
离子扩散系数
三、充放电测试技术
测试原理
测试方法及步骤
数据分析
以微分差容(dQ/dV)曲线为例,介绍一下常见的 dQ/dV曲线制作和分析方法。一般是通过小电流对锂离子电池进行充放电,并记录充放电参数,特别是电量、电压数据,获得这些数据后对这些数据进行处理,以第 n+1个数据点的电压和电量数据减去第 n个数据点电压和电量数据,得到一个 dV和 dQ数据,依次对所有数据进行处理,得到一系列的 dV 和 dQ数据,然后以 dQ除以 dV就得到了另外一个数据 dQ/dV,然后以 dQ/dV作为纵坐标,以电压、容量或者 SOC等作为横坐标,获得一个标准的dQ/dV曲线,同理可获得标准的dV/dQ 曲线。微分差容(dQ/dV)曲线的应用实例。
充放电循环测试数据分析
倍率充放电测试数据分析
总结