首页/文章/ 详情
banner

超大涡模拟:燃料管束内的流动传热

10月前浏览4776

如果可以用几个词来概括湍流的本质,那一定包括:「三维」,「非定常」,「多尺度」

湍流的本质导致了直接模拟湍流的计算代价非常大,为了能在有限的计算机资源下模拟湍流,前辈大牛们提出了几种方法,包括了大涡模拟(LES)和雷诺平均(RANS)。

SIMPOP
大涡模拟(LES)  

大涡模拟(LES)基本思想是对NS方程进行某种过滤,大涡结构受流场影响较大,小涡则可视为各向同性,因此通过滤波处理将小涡从流畅过滤,只计算大涡,而小涡则使用统一的次网格尺度模型进行模拟,过滤尺度一般为网格尺度。

雷诺平均(RANS)  
雷诺平均(RANS)基本思想是对NS方程进行(时间)平均,将非定常的湍流问题转化为一个定常的问题研究。
对于模拟计算湍流,擅长多相流分析的通用流体仿真软件VirtualFlow提供基于雷诺时均(RANS)的湍流模型以及大涡模拟(LES),还提供了超大涡模拟(Very-large Eddy Simulation, V-LES)。这些模型均可以与多相流模型耦合。
超大涡模拟(V-LES)  

超大涡模拟(V-LES)由Speziale(1998年)提出,并由Ruprechtet al. (2003年)与Johansen et.al.(2004年)进行了改进。

超大涡模拟(V-LES)结合了非定常U-RANS与LES的优点,可以精确求解大于网格大小尺度以上所有湍流尺度的运动,并使用基于U-RANS中k-e方程的两个方程模拟小涡的运动。

超大涡模拟(V-LES)与大涡模拟(LES)的区别在于超大涡模拟(V-LES)的过滤尺度不再是网格尺度,而是介于网格尺度和宏观尺度(如管道直径)之间的一个值。当网格尺度大于过滤尺度时,超大涡模拟(V-LES)与雷诺时均(RANS)模型近似;当网格尺度接近过滤尺度时,超大涡模拟(V-LES)近似大涡模拟(LES)。因此,可以认为 V-LES是U-RANS与LES之间的过渡。
湍流模型(RANS, LES, V-LES)  
  • RANS:雷诺时均
  • LES:可捕捉大于网格尺度的涡结构;Re~1 X 104 - Re~ 1 X 105
  • V-LES:可捕捉大于某特征尺度(如管径)的涡结构;Re > 1 X 105

RANS

(稳态/非稳态)

LES

(3D, 非稳态)  


V-LES
(3D, 非稳态)

因此,超大涡模拟(V-LES)在效率与精确性的平衡上优于U-RANS与LES,可以广泛应用于工业问题中的高Re数流动。

V-LES 模型 + IST 网格  
   

燃料组件子通道中的流动与沸腾换热

# 应用案例 #    
   

Experiment of Sadatomi et al. IJMF 2004

燃料棒子通道的研究涉及到管束之间子通道的两相流水力平衡。根据实验搭建的几何机构建模,并采用IST技术进行网格划分,如图1所示。

   
   

实验装置的尺寸:

燃料棒直径:d = 16mm

燃料棒间距:p = 20 mm

间距与直径之比:p / d = 1.25

间隙:S11 = S12 =S22 = 4mm

水力直径:Dh = 14.3 mm

流通面积:A = 194 mm2

   
   
   
   
   
   
图1 子通道几何结构及IST网格    

采用IST网格技术,可免去为每个管画BFC网格的麻烦。CAD文件中的管曲面嵌入到笛卡尔均匀网格中,大大减少了网格倾斜引起的误差。计算域长度减少到 L=120mm,管的长度减少到Lt=20mm。计算域的宽度设置为W=30 mm,由65x65x130个网格单元组成。

(注:该模拟仅是测试ITM方法对捕捉传热两相流复杂界面变化的能力)

在预测BWR燃料棒束中冷却剂的传热流动特性时,必须准确评估子通道之间的流动传质。两相系统中的传质包括三个独立部分:空泡漂移(voiddrift)、交错流动(diversion cross-flow)和湍流混合(turbulent mixing)。该算例中包含了流体流动和传热的多尺度模拟,未考虑相变过程。

在此问题中,湍流对相界面的影响十分明显,采用VirtualFlow软件中V-LES模型进行计算。V-LES方法计算精度比RANS方法高,且计算时间比LES方法少,尤其适用于工业级计算模拟应用。

计算基于完全耦合(固相-气相-液相)的传热方程,可以得到每根燃料组件之间的共轭传热分布。图2及图3展示的是在湍流情况下(进口速度UL=1 m/s,入流气泡分数为50%)通道中气液界面上的温度分布,图2为横截图,图3为侧视图。

图2 通道中液界面上的温度分布(横截面)

图3 通道中气液界面上的温度分布(侧视图)

由于中心燃料棒位于相界面变化剧烈的区域,具有较高的放热功率,相界面在流场的影响下变形剧烈,导致了管道的随机换热。

图3很好地阐明了管束间两相流的振动,特别是中间的管道的排热率高。

 

通用流体仿真软件VirtualFlow基于独有的IST网格生成技术,结合分块网格优化(BMR)和自适应网格技术(AMR),只需读入固体对象的CAD文件即可自动生成直角坐标网格,每个子区域网格进行自动优化,既可快速生成计算网格,又可保证高阶精度。

VirtualFlow软件特有的超大涡模拟(V-LES)在效率与精确性的平衡上优于U-RANS与LES,更加适用于工业问题中的高Re数流动。      

VirtualFlow主要应用领域包括:核工业、石油&天然气、化工&过程工艺、水利与环境工程、航空航天、微流体等。核工业领域,VirtualFlow软件可用于核安全分析和热工水力模拟,目前应用于众多大型研究课题。


来源:多相流在线
振动多相流湍流通用航空航天水利多尺度曲面VirtualFlow
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2023-09-07
最近编辑:10月前
积鼎科技
联系我们13162025768
获赞 99粉丝 89文章 272课程 0
点赞
收藏
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈