首页/文章/ 详情

信号处理基础之噪声与降噪(一) | 噪声分类及python代码实现

1年前浏览2786

后续将给大家分享信号处理基础系列文章,本期是讲噪声相关知识,包括噪声的定义、分类及python代码实现。

噪声的定义

噪声是信息信号在传输过程中所受到的各种各样干扰信号的总成,其直接影响信号的传输质量,甚至破坏正常的信号。通俗地,噪声定义为信号中的无用信号成分,噪声信号混杂在原始信号中,引起信号的失真。

噪声也可以指包含很多频率的信号,即信号的频谱呈现随机性。噪声无处不在,在一些场合,噪声可以被利用,进而分析和观察系统的输出特性。

为了排除噪声的影响,DSP最重要的应用之一是消除信号中的噪声。

噪声的分类

按照噪声对信号的干扰形式分:可分为加性噪声和乘性噪声。
  • 加性噪声噪声和信道内传输的信号之间存在着相互叠加的关系,其特点是噪声是独立存在的,与信道信号的有无无关,其对信号传输质量影响较大加性噪声在实际应用中只能被设法减小,无法被彻底清除。
  • 乘性噪声噪声和信道内传输的信号之间存在相乘的关系,随着信号的存在而存在,当信号消失后,乘性噪声也将湮没。

按照噪声的功率谱分:可分为白噪声和有色噪声。
  • 白噪声:功率谱密度在整个频域内是常数的噪声。所有频率具有相同能量密度的随机噪声称为白噪声。若噪声的概率密度函数同时服从高斯分布,则称为高斯白噪声。具体地,白噪声定义如下:
    

其功率谱密度可表示为:

    
  • 有色噪声功率谱密度函数不平坦的噪声,有色噪声包括红噪声、粉噪声和蓝噪声等。
    • 红噪声红噪声也成为布朗噪声,为随机移动噪声。红噪声的功率谱密度与其频率        成反比,即该类噪声在低频时有较大的能量。根据“布朗运动瞬时速度为零均值不相关白噪声”的布朗运动规律,布朗运动是对白噪声进行积分而来,可以得到布朗噪声的功率谱密度为
                
    • 粉噪声粉噪声介于白噪声和红噪声之间,在很宽频率范围内用等比例频带宽度测量时,频谱连续而均匀的噪声。在给定频率范围内(不含直流成分),随着频率的增加,其功率密度每倍频程下降3dB(密度与频率成反比)。
    • 粉噪声的功率谱密度可表示为:
            
    • 蓝噪声在有限频率范围内,功率密度随频率的增加每倍频增长3dB(密度正比于频率)。蓝噪声与粉噪声相对,与粉噪声正好相反,低频声音变得更弱,高频声音变得更强。一般地,将白噪声的低频部分加以抑制,高频部分增强,即可得到蓝噪声。
    • 紫噪声在有限频率范围内,功率密度随频率的增加每倍频增长6dB(密度正比于频率的平方值)。其与红噪声相对,该类噪声在高频处有较大能量。
    • 灰噪声灰噪音是一种介于白噪音和粉红噪音之间的噪声类型,其频谱能量在不同频率上略有变化。
    • 黑噪声黑噪音又称为静止噪音,它是一种具有危害性的噪音。它是在20000Hz以上的频率,一定程度上类似于超声波的噪音,这种黑噪音就像“黑光”一样,由于频率太高而使人们无法感知,但它对周围的环境仍然会构成影响,是一种有危害的噪音。黑噪声具有        ,在信号处理中,我们经常会提及狄拉克(Dirac)函数或单位脉冲,这种脉冲是指具有零宽度和无限高电平的信号。
    总体而言,噪声是一个随机过程,而随机过程有其功率谱密度,功率谱密度函数的形状决定了噪声的“颜色”。

基于python的噪声构造

  • 白噪声
 






























import numpy as npfrom scipy import fftpackimport matplotlib.pyplot as pltimport matplotlib
# 生成白噪声n_sampling = 10000fs = 1000white_noise = np.random.normal(0,5,n_sampling)t = np.linspace(0, n_sampling / fs, n_sampling)# 计算功率谱p = fftpack.fft(white_noise)power = np.abs(p)**2              # 计算功率谱 (幅度的平方)power_db = 10 * np.log10(power)   # 幅值转换为分贝f = np.fft.fftfreq(p.size, 1/fs)  # 计算频率
fig = plt.figure(figsize=(10, 6), dpi=100)font = {'family': 'Times New Roman', 'size': 14, 'weight': 'normal',}matplotlib.rc('font', **font)grid = plt.GridSpec(8, 8, hspace=0.1)plt.subplot(grid[0:2, 0:8])plt.plot(t, white_noise, 'b')plt.xlabel('time(s)', fontname='Times New Roman', fontsize=14)plt.ylabel('Amplitude', fontname='Times New Roman', fontsize=14)plt.subplot(grid[3:8, 0:8])plt.plot(f[0:n_sampling//2], power_db[0:n_sampling//2], 'r')plt.xlabel('Frequency(Hz)', fontname='Times New Roman', fontsize=14)plt.ylabel('Magnitude(dB)', fontname='Times New Roman', fontsize=14)plt.show()fig.align_labels()

图1 白噪声及其功率谱

  • 红噪声

































import numpy as npfrom scipy import fftpackimport matplotlib.pyplot as pltimport matplotlib
# 生成红噪声n_sampling = 10000fs = 1000std = 3white_noise = np.random.normal(0,5,n_sampling)red_noise = np.cumsum(white_noise)red_noise = red_noise / np.max(np.abs(red_noise)) * stdt = np.linspace(0, n_sampling / fs, n_sampling)# 计算功率谱p = fftpack.fft(red_noise)power = np.abs(p)**2              # 计算功率谱 (幅度的平方)power_db = 10 * np.log10(power)   # 幅值转换为分贝f = np.fft.fftfreq(p.size, 1/fs)  # 计算频率
fig = plt.figure(figsize=(10, 6), dpi=100)font = {'family': 'Times New Roman', 'size': 14, 'weight': 'normal',}matplotlib.rc('font', **font)grid = plt.GridSpec(8, 8, hspace=0.1)plt.subplot(grid[0:2, 0:8])plt.plot(t, red_noise, 'b')plt.xlabel('time(s)', fontname='Times New Roman', fontsize=14)plt.ylabel('Amplitude', fontname='Times New Roman', fontsize=14)plt.subplot(grid[3:8, 0:8])plt.plot(f[0:n_sampling//2], power_db[0:n_sampling//2], 'r')plt.xlabel('Frequency(Hz)', fontname='Times New Roman', fontsize=14)plt.ylabel('Magnitude(dB)', fontname='Times New Roman', fontsize=14)plt.show()fig.align_labels()
图2噪声及其率谱
  • 蓝噪声
































  
import numpy as npfrom scipy import fftpack, signalimport matplotlib.pyplot as pltimport matplotlib# 生成蓝噪声n_sampling = 10000fs = 1000exponent = -1.5white_noise = np.random.normal(0,5,n_sampling)b, a = signal.butter(1, 0.5, 'high')blue_noise = signal.lfilter(b, a, white_noise)t = np.linspace(0, n_sampling / fs, n_sampling)# 计算功率谱p = fftpack.fft(blue_noise)power = np.abs(p)**2              # 计算功率谱 (幅度的平方)power_db = 10 * np.log10(power)   # 幅值转换为分贝f = np.fft.fftfreq(p.size, 1/fs)  # 计算频率
fig = plt.figure(figsize=(10, 6), dpi=100)font = {'family': 'Times New Roman', 'size': 14, 'weight': 'normal',}matplotlib.rc('font', **font)grid = plt.GridSpec(8, 8, hspace=0.1)plt.subplot(grid[0:2, 0:8])plt.plot(t, blue_noise, 'b')plt.xlabel('time(s)', fontname='Times New Roman', fontsize=14)plt.ylabel('Amplitude', fontname='Times New Roman', fontsize=14)plt.subplot(grid[3:8, 0:8])plt.plot(f[0:n_sampling//2], power_db[0:n_sampling//2], 'r')plt.xlabel('Frequency(Hz)', fontname='Times New Roman', fontsize=14)plt.ylabel('Magnitude(dB)', fontname='Times New Roman', fontsize=14)plt.show()fig.align_labels()  
图3噪声及其率谱
  • 紫噪声





























  
import numpy as npfrom scipy import fftpackimport matplotlib.pyplot as pltimport matplotlib# 生成紫噪声n_sampling = 10000fs = 1000white_noise = np.random.normal(0,5,n_sampling)purple_noise = np.diff(white_noise, 2)t = np.linspace(0, len(purple_noise) / fs, len(purple_noise))# 计算功率谱p = fftpack.fft(purple_noise)power = np.abs(p)**2              # 计算功率谱 (幅度的平方)power_db = 10 * np.log10(power)   # 幅值转换为分贝f = np.fft.fftfreq(p.size, 1/fs)  # 计算频率fig = plt.figure(figsize=(10, 6), dpi=100)font = {'family': 'Times New Roman', 'size': 14, 'weight': 'normal',}matplotlib.rc('font', **font)grid = plt.GridSpec(8, 8, hspace=0.1)plt.subplot(grid[0:2, 0:8])plt.plot(t, purple_noise, 'b')plt.xlabel('time(s)', fontname='Times New Roman', fontsize=14)plt.ylabel('Amplitude', fontname='Times New Roman', fontsize=14)plt.subplot(grid[3:8, 0:8])plt.plot(f[0:len(purple_noise)//2], power_db[0:len(purple_noise)//2], 'r')plt.xlabel('Frequency(Hz)', fontname='Times New Roman', fontsize=14)plt.ylabel('Magnitude(dB)', fontname='Times New Roman', fontsize=14)plt.show()fig.align_labels()  
图4噪声及其率谱
  • 粉噪声/黑噪声


















import numpy as np
def generate_pink_or_black_noise(samples, sample_rate, alpha):"""这里的alpha参数决定了噪声的颜色。alpha=1.0对应于粉噪声。如果你想生成其他颜色的噪声,可以改变这个参数。例如,alpha=1.5将生成黑噪声,alpha=0.0将生成白噪声。"""    omega = np.fft.fftfreq(samples, d=1./sample_rate)    s_scale = omega    s_scale[0] = 1    sr = np.random.normal(scale=np.sqrt(np.abs(s_scale)**-alpha))    si = np.random.normal(scale=np.sqrt(np.abs(s_scale)**-alpha))    s = sr + 1j*si    y = np.fft.ifft(s).real    return y
# 使用函数生成粉噪声pink_noise = generate_pink_or_black_noise(10000, sample_rate, alpha)


作者:陈凯歌

编辑:陈凯歌

校核:李正平、张勇、张泽明、王畅、赵栓栓


来源:故障诊断与python学习
python
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2023-09-07
最近编辑:1年前
故障诊断与python学习
硕士 签名征集中
获赞 72粉丝 70文章 145课程 0
点赞
收藏
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈