图4 陆上水下熔池对流对比,(a-c)陆上,(d-f)水下环境
在水下激光直接金属沉积过程中,水对基板的激冷作用及局部干区内大气流加快熔池散热,故水下熔池内的冷却速率较陆上中会有大幅提升,从而细化晶粒,提高位错密度。
图5 陆上水下凝固组织晶粒尺寸对比,(a-c)水下环境,(d-f)陆上环境
在氮气保护氛围下开展水下激光直接能量沉积修复,水下高压环境提高了熔池内氮的溶解度和沉积层的氮含量。
与陆上试样相比,水下环境造成的高冷却促进了修复试样中富Cr碳化物析出。不同沉积层间的IHT效应及冷却过程中所带来的高温持续时间差异直接影响了层间碳化物形貌及含量。陆上试样在缓慢空冷过程中促进了不稳定的奥氏体转变为铁素体和晶内层片状碳化物。此外,水下环境中增大的环境压力提升了氮在熔池中的溶解度从而降低了层错能,导致水下试样中孪晶和层错的出现。
图8 陆上及水下试样的微观组织演变对比结果
图9 陆上及水下试样的力学性能对比结果
与陆上DMD修复试样相比,水的淬火效应提高了UDMD试样的位错密度,高冷却速率抑制了板条马氏体向回火马氏体的转变,降低了沉积层的本征热处理效应(IHT)。此外,在0.35 MPa压力下,在沉积层中发现(Ti, V)N纳米颗粒的析出。
图10 微观组织形貌
图12 (Ti, V)N颗粒的析出过程及强化机理
与陆上DMD修复样品相比,水的淬火作用导致UDMD修复样品具有较高的硬度。所有样品在常温下均为韧性拉伸断裂,此外,当水下环境压力P ≤ 25MPa时,UDMD试样拉伸断裂于修复区,试样的拉伸性能和低温冲击性能与水下环境压力之间没有明显的关系。当P = 0.35 MPa时, 加压氮化析出的热稳定的(Ti, V)N颗粒强化了修复区,UDMD修复试样拉伸断裂于母材。
图13 陆上修复试样和水下修复试样的拉伸性能
图14 (a, b)水下微观组织形貌,(c, d)陆上微观组织形貌
图15 水下修复试样和陆上修复试样的纳米Cu析出特征对比
水下30 m沉积试样均断裂在基体上,说明修复区具有较高的强度和良好的冶金结合性,能够满足焊接件的要求。基体断裂处断口主要由韧窝组成,表明基体区域为韧性断裂。陆上沉积试样断裂在热影响区,一方面是由于自回火作用导致修复区的硬度和机械强度较低,另一方面是较大的热输入导致热影响区的组织较为粗大。
本研究将传统的陆上DMD技术拓展至水下环境,基于送粉式的水下激光直接金属沉积技术(UDMD),开展了针对不同海工钢的水下原位修复实验。研究结果揭示了水下环境对熔池传热、传质及元素分布的影响机理。阐明了水下沉积工艺-组织-力学性能关联机制。此外,首次将传统的加压氮化理论应用于水下原位修复领域,为在后续大水深原位沉积高氮沉积层提供了理论基础。本研究所作工作可为水下激光加工提供理论依据及数据基础。
(1)MZ Chen, K Yang, ZD Wang, SB Wang, EK Wu, ZH Ni, JZ Lu, GF Sun*. Underwater laser directed energy deposition of NV E690 steel. Advanced Powder Materials, 2022, in press.
(2)K Yang, MZ Chen, ZD Wang, SB Wang, Y Lu, ZH Ni, GF Sun*. Evolutions of microstructure and mechanical property of high nitrogen steel repaired by underwater directed energy deposition technique. Materials Science & Engineering A, 2022, 857: 144077.
(3)SB Wang, ZD Wang, K Yang, MZ Chen, EK Wu, ZH Ni, GF Sun*. Investigation of on-site repair of 18Ni300 by underwater laser direct metal deposition technique. Journal of Manufacturing Processes, 2022, 80: 909-919.
(4)EK Wu, ZD Wang, K Yang, MZ Chen, SB Wang, Y Lu, ZH Ni, GF Sun*. Microstructure and mechanical properties of underwater laser deposition remanufactured 316LN stainless steel at a pressure of 0.3 MPa. Optics and Laser Technology,2022, 155: 108394.
(5)ZD Wang, K Yang, MZ Chen, Y Lu, SB Wang, EK Wu, KD Bi, ZH Ni, GF Sun*. High-quality remanufacturing of HSLA-100 steel through the underwater directed energy deposition in an underwater hyperbaric environment. Surface & Coatings Technology,2022, 437, 128370.
(6)ZD Wang, SB Wang, K Yang, MZ Chen, KD Bi, ZH Ni, GF Sun*. In-situ SEM investigation on the fatigue behavior of Ti-6Al-4V ELI fabricated by the powder-blown underwater directed energy deposition technique. Materials Science & Engineering A, 2022, 838: 142783.
(7)GF Sun*, ZD Wang, Y Lu, MZ Chen, K Yang, ZH Ni. Underwater laser welding/cladding for high-performance repair of marine metal materials: a review. Chinese Journal of Mechanical Engineering, 2022, 35:5.
(8)ZD Wang, K Yang, MZ Chen, Y Lu, KD Bi, GF Sun*, ZH Ni. Investigation of the microstructure and mechanical properties of Ti-6Al-4V repaired by the powder-blown underwater directed energy deposition technique. Materials Science & Engineering A, 2022, 831: 142186.
(9)ZD Wang, GF Sun*, MZ Chen, Y Lu, SB Zhang, HF Lan, KD Bi, ZH Ni*. Investigation of the underwater laser directed energy deposition technique for the on-site repair of HSLA-100 steel with excellent performance. Additive Manufacturing, 2021, 39: 101884.
(10)ZD Wang, GF Sun*, Y Lu, MZ Chen, HF Lan, KD Bi, ZH Ni*. High-performance Ti-6Al-4V with graded microstructure and superior properties fabricated by powder feeding underwater laser metal deposition. Surface & Coatings Technology, 2021, 408: 126778 (SCI)
来源:增材制造硕博联盟