对于分层流和段塞流,模型比较表明VOF模型的选择很简单。为其他类型的流动选择模型就不那么简单了。作为一般准则,有一些参数可以帮助为这些其他流动确定适当的多相流模型: 颗粒载荷β和斯托克斯数st(注意,在本讨论中“颗粒”一词是指颗粒、液滴或气泡)。
颗粒载荷对相的相互作用有很大的影响。定义颗粒载荷为分散相(d)与载体相(c)的质量密度比:
材料密度比为:
气-固流动大于1000,液-固流动约为1,气-液流动小于0.001。 通过这些参数,可以估算出颗粒相各颗粒之间的平均距离,Crowe等人已经给出了这个距离的估计。
根据颗粒载荷的不同,相间相互作用程度可分为以下三类:
对于非常低的载荷,两相之间的耦合是单向的(即流体通过阻力和湍流影响颗粒,而颗粒对流体没有影响)。离散相模型、混合模型和欧拉模型都能正确地处理这类问题。由于欧拉模型是计算量最大的,建议采用离散相或混合模型。
对于中等载荷,耦合是双向的(即流体通过阻力和湍流影响颗粒相,而颗粒反过来通过平均动量和湍流的降低影响流体)。离散相、混合和欧拉模型都适用于这种情况,但需要考虑其他因素,以决定哪种模型更合适。下面是使用Stokes数作为指南的信息。
对于高载荷,有双向耦合加上颗粒压力和颗粒引起的粘性应力(四向耦合)。只有欧拉模型才能正确地处理这类问题。
具有中间颗粒载荷的系统,估计Stokes数的值可以帮助选择最合适的模型。可以将Stokes数定义为粒子响应时间与系统响应时间的关系:
当 st<<0,粒子将紧密跟随流动,三种模型(离散相、混合相或欧拉)均适用;因此,可以选择最经济的(大多数情况下是混合模型),或者考虑到其他因素,选择最合适的。
当st>1中,粒子将独立于流动而移动,适用于离散相模型或欧拉模型。
当 st=1,三种模型中的都适用;可以选择计算量最小的或考虑其他因素选择最合适的模型。
例如,对于一种特征长度为1 m、特征速度为10 m/s的煤炭分级机,直径为30微米的颗粒斯托克斯数为0.04,直径为300微米的颗粒为4.0。显然,混合模型不适用于后一种情况;对矿物加工而言,在特征长度为0.2 m、特征速度为2 m/s的系统中,直径为300微米的颗粒的Stokes数为0.005,在这种情况下,你可以选择混合模型和欧拉模型。
离散相模型的使用仅限于低体积分数,除非使用密集的离散相模型公式。此外,对于离散相模型模拟,可以选择比欧拉模型更先进的燃烧模型。若要考虑粒子分布,需要使用种群平衡模型或离散相模型和密集离散相模型。
关注关注号:“CFD流”,获得更好的阅读效果以及学习资料。