▲图解:(a) S气雾化的 Zr39.6 Ti33.9 Nb7.6 Cu6.4 Be12.5 (DH3) 粉末的SEM照片;(b) 激光增材制造的示意图. BD: 制造方向 , LD: 拉伸载荷方向 , TD: 横向方向 ;(c) 预设计的梯度结构的块体金属玻璃复合材料(BMGC)的示意图 。一个10层的层面结构,具有梯度过渡的结晶枝晶的体积分数从 20% 到65% (变化间隙为 ~5% )之间进行变化。为后续留出随后的切割和抛光的间隙以进行拉伸实验,两个额外的层,即底部为20%的枝晶和顶部为65%的枝晶进行制造出来。(d) 激光增材制造技术制造出来的10层梯度变化的DH3 BMGC,每层的厚度大约为0.5 mm。(e) 结晶枝晶的体积分数,其中F是P/v的函数。
▲图解:(a-j) 不同层的显微组织的形貌,亮色的对比区域为结晶枝晶,黑色的区域为玻璃基材;(k) 高分辨率的透射电镜照片,显示了两相之间的界面,插入的图片显示的是相应的衍射图案。枝晶和玻璃基材之间平滑的界面可以被观察到。结晶枝晶呈现出bcc的衍射模式,而玻璃基材则呈现出一个宽的和扩散的光轮(晕圈),这是典型的非晶结构。其中 BD: 制造方向, LD: 拉伸载荷方向。
图解:(a) 梯度DH3块体金属玻璃复合材料(BMGC)的拉伸工程应力-应变曲线,插入的图为样品的拉伸位置。梯度 DH3 BMGC拉伸样品的拉伸行为分为三个阶段,即线性弹性变形阶段,应变硬化区和应变软化区。为了便于比较,铸造的单一成分的块体金属玻璃 Vitreloy 1,铸造的非梯度的具有67%枝晶的 DH3 BMGC和激光增材制造的非梯度的具有20%和65%枝晶的 DH3 BMGC也包括在图中。(b) 梯度BMGC的断裂形貌,两个显著的断裂平面同拉伸载荷的方向可以被识别出来。对于顶部的5层,<45%的枝晶,其断裂角度接近 45°。断裂角度在载荷方向接近 90°。而在底部的5层在 <45%的枝晶的时候,断裂角度接近 45°。(c) 在第五层和第六层界面处的扩大,同断裂平面相类似,剪切带沿着界面的偏向可以被观察到当他们在界面处扩展的时候。剪切带的分枝也会在第五层内发生。
在这里,来自大连交通大学的研究人员,使用Zr39.6 Ti33.9 Nb7.6 Cu6.4 Be12.5 (DH3)块体金属玻璃复合材料作为模型材料,应用当前的粉末沉积激光增材制造技术来制造多层梯度的块体金属玻璃复合材料,结果获得了优异的屈服强度 (>1.3 GPa) 和拉伸韧性 (~13% 的延伸率到失效)。激光增材制造非常容易就能实现对特定位置进行凝固组织的定制和成分的定制。其高的凝固速率可以达到10exp(3)3~10exp(4)K/s ,也促使许多合金可以形成金属玻璃。在这一研究中,研究人会员制造了梯度的块体金属玻璃复合材料,包括多层的Zr39.6Ti33.9Nb7.6Cu6.4Be12.5,具有高度可控的梯度,其结晶枝晶的体积分数自~20% 到~65% 之间可以通过控制激光加工的冷却速率来实现精确的控制。其非凡的机械性能基于按次序的和“循环旅程”的塑性变形和断裂过程给予了解释,与此同时,位错移动诱导的结晶枝晶的应变硬化和剪切带诱导的玻璃基体应变软化之间存在竞争。我们的研究成功的促使发展具有高的强度-韧性权衡的梯度块体金属玻璃复合材料开辟了一个新的路径,并且用激光增材制造技术使得制造大规模的块体金属玻璃复合材料的制造的应用成为可能。
▲图解:(a) 在经过不同的整体应变阶段之后,沿着梯度BMGC材料的边缘表面的显微硬度的变化。数字1到10,用箭头来显示,同梯度制备 BMGC时的层数相对应。10层的平均显微硬度也给予了显示。(b) 在拉伸应变为~3%时,梯度BMGC测量截面高度等高线沿着制造方向的边缘表面厚度的变化,每一层的厚度~0.5 mm ,如图1所示。(c) 定量测量的b图中的沿着制造方向所得到的均值高度。经过 ~3%的应变,显著的高度差别可以被测量出来。高度在底部的三层为底栖三层到第八层的时候几乎没有,但在第一层时,快速的降低,表明在软的基材比硬的基材具有巨大的变形。
▲图解: (a)-(c)采用 FEM 模拟技术得到的激光增材制造过程中单道激光熔化和凝固的过程。(d) 熔池和热影响区的温度分布的示意图. 熔池中心中的黄色点为图中f温度曲线的目标位置所收集的结果。(e)金属玻璃的凝固的时间-温度-相变曲线(TTT)。金属玻璃的结晶随着凝固的变化通过临界冷却速率来测量,可以通过估计R在鼻子温度处进行测量.反过来,R在鼻子温度处的结果可以应用来估计金属玻璃在凝固时的结晶的含量。(f)激光增材制造的DH3 BMGC在不同的P和V组合下的5个例子。(g) 提取的R随P/v 和 F变化的函数。
总而言之,使用DH3块体金属玻璃复合材料作为模型材料,研究人员成功的使用激光增材制造技术制备出多层的,梯度的,结晶枝晶的体积分数自~20%到 ~65%之间进行梯度变化的块体金属玻璃复合材料。可控的制造梯度的块体金属玻璃复合材料的制造基于对激光增材制造过程中工艺过程——显微组织之间关系的理解来进行工作的。并且通过对块体金属玻璃复合材料的固有的显微组织对冷却速率的的敏感性进行杠杆作用。梯度的DH3块体金属玻璃复合材料呈现出令人惊奇的屈服强度,达到1317MPa,拉伸断裂应变为 ~13%。提高的强度——韧性的协同作用主要归因于相邻层之间的协同强化和基于梯度块体金属玻璃复合材料的分层非均匀微结构的异步变形模式的作用。异步变形遵从塑性变形的双向往返旅程通道的路径的塑性变形和裂纹扩展。这一独特的来回旅程机械反应有效的促进了块体金属玻璃复合材料的拉伸韧性的增加。通过系统的表征单个层的显微硬度的演变,我们揭示了其异常变形行为同位错滑移诱导的结晶枝晶的应变硬化和金属玻璃基材的剪切带诱导的应变软化的机械的连接相关。当前的研究工作为通过梯度结构设计主旨来发展高性能的块体金属玻璃复合材料开辟了一个新的途径,并且引入激光增材制造技术来制造,也提供了一个灵活多变的途径来促进了块体金属玻璃复合材料在大规格上的应用。基于激光的灵活性可以控制定制的凝固组织和化学成分的定制,毫无疑问的的,未来的工作需要优化梯度设计和完全充分的理解塑性变形的微观机理。无论如何,我们相信当前的工作对其他合金系统,如工作硬化的具有应力诱导的马氏体相变的块体金属玻璃复合材料也是适用的,许多其他多组分合金系统也是适用的,如相和/或显微结构的截面尤其同快速凝固造成的热历史敏感相关的合金。
论文链接:
Controllable additive manufacturing of gradient bulk metallic glass composite with high strength and tensile ductility, Acta Materialia, Volume 206, 2021, 116632.
https://doi.org/10.1016/j.actamat.2021.116632