在电子电路中,需要对所制作电路的各种技术参数进行分析,以判断电路的性能指标是否符合要求。Multisim 14.0具有丰富的电路所需要的仿真与分析功能。
"Sensitivity"(灵敏度)分析指电路中某个元件的参数发生变化时,分析它的变化对电路节点电压或支路电流的影响。
灵敏度分析包括直流灵敏度分析和交流灵敏度分析。直流灵敏度分析的仿真分析结果以数值的形式显示, 交流灵敏度的仿真分析结果可以用曲线的形式显示。
在Multisim14.0中建立电路如图10-19所示。执行"Simulate"→"Analyses and simulation" 命令,弹出"Analyses and simulation" 窗口,在“Active Analysis”选项区中选择“Sensitivity”,打开“Sensitivity”对话框,共4个选项卡,除“Analysis parameters”外,其余均与“DC Operating Point”相同。灵敏度分析“Analysis parameters”选项卡如图10-20所示,对其说明如下。
1)Output nodes/currents:输出节点,其中包括3个单选按钮。“Voltage”单选按钮用于选择进行电压灵敏度的分析。选中该单选按钮后,在“Output node”下拉列表中选择要分析的节点,这里选择V(2);在“Output reference”下拉列表中选择输出端的参考节点,这里选择V(0);“Current”单选按钮用于选择进行电流灵敏度的分析,用法与“Voltage”单选按钮类似,这里不作选择;“Expression”单选按钮是为分析结果增加一个表达式的显示形式,选择进行变量表达式灵敏度分析,这里不作选择。
2)Output scaling:用于选择输出灵敏度的格式,有Absolute(绝对灵敏度)和Relative(相对灵敏度)两种,这里选择“Relative”。
3)Analysis Type:对直流灵敏度分析或交流灵敏度分析进行设置,这里选择“DC Sensitivity”。
在灵敏度分析“Output”选项卡中,将所有的变量rr1、rr2、vv1都设置为输出节点。设置完后单击“Run”按钮,灵敏度分析结果如图10-21所示。
灵敏度与误差的关系密切。如果设电路的理想输出为Y,X为电路中的某个参数,则电路输出信号的偏差ΔY/Y=ΔX/X×Z。这里Z为X所对应的灵敏度,相当于图10-21中的数值。ΔX/X为器件偏离标称值的程度,即参数偏差,可以用百分比表示。在灵敏度分析时,为了理解问题的方便,一般视电源的误差可以忽略,在图10-21中,vv1项的灵敏度为1,这是因为vv1就是电源电压。
电路系统传递函数的极点决定了系统是否稳定,零点和极点一起决定了系统的稳态性能指标,因此对系统传递函数的零极点分析是很有必要的。对于高阶系统,直接求取其零极点比较有难度,Multisim 14.0提供的“Pole Zero(极点零点)”分析可快速求出系统的零极点。
在Multisim 14.0中建立仿真电路如图10-22所示,读者可自行用信号流图结合梅森公式求得系统传递函数。执行“Simulate”→“Analyses and simulation”命令,弹出“Analyses and simulation”窗口,在“Active Analysis”选项区中选择“Pole Zero”,打开“Pole Zero”对话框,其“Analysis parameter”选项卡如图10-23所示,各参数含义如下。
图10-22 零极点分析仿真电路
1)Analysis type:用于设置零极点分析的分析类型。该选项区共有4个选择模式:Gain Analysis(电压增益分析),即输出电压/输入电压;Impedance Analysis(互阻抗分析),即输出电压/输入电流;Input Impedance(电路输入阻抗)以及Output Impedance(电路输出阻抗)。
图10-23 零极点分析“Analysis parameters”选项卡
2)Nodes:用于设置输入/输出的节点(正、负端点)。该选项区包括“Input(+)”下拉列表,即正的输入端点;“Input(-)”下拉列表,即负的输入端点(通常接地,即节点0);“Output(+)”下拉列表,即正的输出端点;“Output(-)”下拉列表,即负的输出端点(通常接地,即节点0)。
3)Analysis performed:用于设置分析的对象,有Pole Analysis(只求出极点)、Zero Analysis(只求出零点)和Polo-Zero Analysis(同时求出零点和极点)3种选项。
Analysis options和Summary的设置和其他分析方法相同,默认设置即可,设置参数如图10-23所示。
单击“Run”按钮,零极点分析结果如图10-24所示,其中,“Real”表示实部,“Imaginary”表示虚部。根据仿真结果可知该系统无零点,有3个极点(取近似值),分别为-1、-1+0.709j和-1-0.709j。即系统传递函数为:H(s)= 0.5/(s+1)(s+1+0.709j)(s+1-0.709j)=1/(s3+2s2+2s+1),与理论分析一致。
图10-24 零极点分析结果
▊《Multisim电路设计与仿真——基于Multisim14.0平台》
赵全利 主编 王霞 李会萍 副主编
全面反映Multisim14电路仿真设计领域新发展
配微课视频,注重电路设计技能训练