首页/文章/ 详情

基于高阶有限体积方法的CFD软件那么少?多相流专家这样说…

1年前浏览4365

1.问题的提出

有限体积方法可以在离散意义上满足局部和全局的守恒律,是CFD中最常用的数值求解方法。为何众多基于有限体积方法的软件最高只有二阶精度,鲜见3阶以上精度的有限体积方法?这是这篇文章的出发点。

有人认为,是非结构网格导致了这个困难。这个认识没有触及根本,至少是不全面的。下面我们会看到,即使是最简单的、不考虑一般曲线坐标系的平直结构网格,相比有限差分方法,要实现3阶以上精度,必须付出很多额外代价。

这里以平直结构网格上的三阶有限体积方法为例,展开说明。

2.问题背后的原因

2.1. 一维守恒方程


2.2. 二维情形

3. 小结

相较相同精度的有限差分方法,

⚫ 见表格 1,3 阶有限体积方法,对应二维和三维流动,计算量分别增加了 3 倍和 5倍。

⚫ 见表格 2,5 阶有限体积方法,对应二维和三维流动,计算量分别增加了 4 倍和 10倍。

希望这篇文章能够帮助更多同行了解这个基础问题。

4. 附录

4.1. 分辨率和精度

一般来说,离散格式的误差可以表示为 𝐸 = 𝐶Δ𝑥𝑝𝐸 整体表示格式的分辨率,而 𝑝 表示格式的精度。分辨率是描述算法的状态,而精度则是描述随着网格加密,算法的误差的变化过程。

4.2. 折中

如果仅在一个方向进行高阶重构,计算代价与有限差分方法相当。尽管格式仍然是二阶精度,但能够提高格式的整体分辨率。在气动计算领域,这种做法很常见。

这种格式,与传统的二阶 Harten TVD 格式比较,尽管精度相当,却具备更高的分辨率。相同网格下,这种高分辨率格式能够更准确的捕捉流场的精细结构。

4.3. 延申

⚫ 对于线性守恒方程,上述问题不存在。比如声场计算,一般基于线化的欧拉方程,又比如 Maxwell 方程等。

⚫ 对于非结构网格上的有限体积方法,额外的重构过程,依然无法避免。模板选择是另外一个棘手的问题。

4.4. 二阶精度有限体积格式

平均值与点值之间,误差是二阶的。如果要求二阶精度,二者可以混同使用。


多相流仿真体系通用航空汽车积鼎 CFD
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2023-07-12
最近编辑:1年前
积鼎科技
联系我们13162025768
获赞 109粉丝 112文章 302课程 0
点赞
收藏
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈