FLUENT迷宫密封泄漏计算案例
迷宫密封是广泛应用在航空发动机、汽轮机、空气压缩机等旋转机械上的一类非接触式密封。迷宫密封利用间隙中的节流过程( 压力能转化为动能) 和密封空腔中的动能耗散过程( 动能转化为热能) 实现对流体密封的效果。随着现代科学技术要求的提高, 特别是在高温、高压、高转速以及高效率旋转机械中, 迷宫密封的作用更加突出[1]。本文根据参考文献内容做一个迷宫密封的案例。
建立的迷宫密封结构如下图所示,含有5个密封齿,该密封的静子上带有5个锥形齿,锥形齿的高度为3.264mm,齿根处宽度为1.524mm,齿尖宽度为0.254mm,齿间距为3.81mm,转子直径Φ274.8mm。本文为了减少计算量,采用二维旋转轴对称模型。在建模时将流道的进出口各外沿20mm,减小由于边界条件设置不理想而产生的计算误差,并稳定流场,不然可能会影响计算收敛性,特别是在出口处可能长生较大回流。另外,本案例在建模时原点设置在第一个齿的齿根处,而FLUENT的对称轴需在x轴上,需要用网格变换工具将计算域移动到正确的位置。
按照如下设置边界条件、材料物性、湍流模型,其中压力设置为全压,具体设置非常简单,不做冗述。
先看一下密封间隙从入口到出口的静压曲线,呈现阶梯式下降,与文献[2]结果一致。 迷宫流道内的速度矢量如下图,每个齿间都存在一个大涡流,与文献基本一致。由于文献采用三维模型,因此速度矢量应该更为准确。 最后看一下泄漏量为1.10kg/s,与文献的1.08kg/s相差约1.85%。 另外,可以设定不同的旋转角速度以获得泄漏量与旋转角速度的的变换关系,获得更丰富的结果,但是随着边界值的改变,网格粗细需要相应更改,本案例从略。
[1] 李忠刚, 陈予恕. 迷宫密封流场和泄漏量的数值分析与研究[J]. 汽轮机技术.[2] Toshio Hirano, Zenglin Guo, R. Gordon. KirkApplication of Computational Fluid Dynamics Analysis for Rotating Machinery—Part II: Labyrinth Seal Analysis[J]. Journal of Engineering for Gas Turbines and Power.著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2023-07-05
最近编辑:1年前