正文共: 1087字 11图 预计阅读时间: 3分钟
1 前言
用四点支撑以保持物体平衡的例子随处可见,比如家里的桌子、椅子等等。正常情况下四个支腿会同时受力(简称四点支撑)[1],但若地面不平或者四支腿长度有偏差,则会出现三支腿受力的情况(简称三点支撑)。倘若想用四点支撑结构将总支撑力均分给四个支点,就要很谨慎了。我们知道,三点确定一个面,四点支撑结构在力学上属于一次不静定问题,想要使得四个支点均匀受力,那么合力的力心位置、四支腿的长度、支撑面的平面度这几个因素就要相当精确控制了。今天我们用一个简单的案例来聊聊这个问题。
本案例我们将使用solidworks的simulation插件来做力学计算。
2 建模描述
我们建立如下的四点支撑结构,结构的边长均为500mm,厚度10mm,支腿的截面30mm×30mm,长度100mm。合力作用在直径Φ43.53,高50mm的圆柱顶面。需要指出的时,力学关系不受上述结构细节尺寸比如厚度、支撑截面等的影响。
3 求解设置与计算
3.1 四点支撑
我们先考虑四点支撑的情况,即假定支腿长度完全一样,支撑平面是理想平面。
首先我们假定合力的力心位于几何中心,则此时四个支腿的力应该是均匀的。
力学边界的设置:将其中一个支腿底面固定,其余四个支腿仅约束竖直方向位移,圆柱顶面施加向下的力600N(如下图)。
力心和几何中心重合,此时四个支腿均匀受力,均为150N。
接下来,我们看一下力心和几何中心不重合的情况,假设力心位置如下。
此时,四个支腿的受力如下,可以看到支腿的受力极不均匀,靠近力心的支腿受力更大。
我们根据参考文献[1]的理论结果进行对应分析,此时a=250mm,b=250mm,m=150mm,n=50mm,W=600N。仿真结果P3=54.9N,P1=186N,P2=322N,P4=37N。按参考文献的关系式,则结果为P3=54.9N,P1=174.9N,P2=305.1N,P4=65.1N。
3.2 三点支撑
现我们假设其中有一个支腿由于自身长度偏差或者地面不平的原因,处于悬空状态(即使上面的压力也未能使其位移足够大到触碰到支撑面)。此时只有三点支撑,我们还是将力心放在几何中心位置,力学边界设置上删除其中一个支腿底部的约束。
这种情况下,剩余三个支腿的反力如下,此时的力已非常不均匀。
我们看一下悬空的支点位移,约为0.35mm,也就是说,假设该支腿长度与其他支腿偏差-0.35mm或者该点的平面度偏差-0.35mm,则该支点将悬空,四点支撑将退化为三点支撑。这是四点支撑结构的支腿长度加工精度要求,因此实际工程中用该结构进行均分力需要谨慎。
参考文献
[1] 姜校林. 矩形四点支撑空间平行力系的力学研究.