不知道为什么小时候的我经常遇到需要弄断铁丝却没有老虎钳也没有小李飞刀的直接考验我智商的高光时刻。虽然显然不能像非洲朋友那样牙咬手撕但我也不是没试过当然最后结局都是没成功。后来可能是因为吃了家里唯一荤菜鸡蛋脑细胞发育了发现反复折弯再反复折弯铁丝就会突然断了。至于铁丝为什么会突然断了我不知道反正就是断了。再后来改革开放了日子好了能吃上猪肉了脑子也发育的差不多了其中的缘由也就慢慢的明白了。
一根铁丝,想要徒手拉断或者瞬间折断那几乎是不可能的,但是如果你将它反复折弯很多次便可以把它折断。这其实就是铁丝被整疲劳了,发生了疲劳破坏。因为铁丝等金属件在生产加工过程中会出现各种缺陷,比如宏观的气孔、杂质、表面划痕以及微观的晶体 位错、滑移带等。在外力作用下这些缺陷处会出现局部应力集中,当局部应力大于材料的屈服强度时便会萌生微裂纹,这些微裂纹在交变载荷作用下逐渐扩展,当扩展到一定程度时突然断裂。
铁丝的疲劳破坏过程中交变载荷水平较高,塑性应变起主导作用,疲劳寿命较短,属于应变疲劳或低周疲劳;当交变载荷水平较低,弹性应变起主导作用时,疲劳寿命较长,属于应力疲劳或高周疲劳。高周疲劳在日常生活中更加普遍,因其交变载荷小,没有明显的塑性变形等前兆,不容易提前发觉,所以具有更大的危险性。美国空军的一架F-15战斗机曾经在模拟空战时就出现了惊险的一幕,事故造成美军F-15战机大面积停飞,调查结果显示,事故起因于飞机上的一根金属纵梁发生了疲劳破坏。
图1 F-15战机疲劳破坏(图片源自网络)
汽车作为我们日常生活中非常重要的代步工具,也是由大量金属件构成的。当汽车行驶在道路上时由于路面的不平整,车身结构会受到交变载荷作用,从而产生微裂纹并逐渐扩展。为了保证车身在整个设计生命周期内不发生疲劳破坏,我们需要对车身结构进行疲劳耐久性能评估。评估方法可分为试验法及CAE(Computer Aided Engineering)仿真分析法,实际的项目开发过程中,两种方法相结合使用。在项目开发前期,样车试制前的产品设计阶段,通过CAE仿真分析识别出疲劳耐久性能危险部位并进行迭代优化,直到疲劳耐久性能合格。然后按照优化好的数据进行样车试制,之后进行样车台架试验及试车场道路试验。整个流程大致如下:
1、路谱载荷获取
2、仿真模型建立
3、疲劳仿真分析
4、台架疲劳试验
5、道路疲劳试验
参考文献
[1] 孙成智等.基于3D数字路面的整车耐久性能评估方法研究[J].汽车工程,2017.
[2] 王国军.MSC.Fatigue疲劳分析实例指导教程[M].北京:机械工业出版社,2009.
[3] 李张银.整车道路模拟与道路试验关联研究[J].汽车零部件,2013.
[4] 闫跃奇等.乘用车C柱内板开裂分析以及改进措施[J].汽车零部件,2016.
[5] 王继光.汽车耐久性试验[J].硅谷,2011.