本文从制造工艺出发,详细综述全固态电池制造的核心:固体电解质的成膜工艺以及大尺寸全固态电池的集成工艺。
1 固体电解质成膜工艺
固体电解质膜为全固态电池独有结构,取代了液态电池的隔膜和电解液,主体为固体电解质。固体电解质的成膜工艺是全固态电池制造的核心。不同的工艺会影响固体电解质膜的厚度和离子电导率,固体电解质膜过厚会降低全固态电池的质量能量密度和体积能量密度,同时也会提高电池的内阻;固体电解质膜过薄机械性能会变差,有可能引起短路。
根据对全固态电池的性能要求选择合适的成膜工艺,得到所需厚度和离子电导率的固体电解质膜。固体电解质的成膜工艺根据是否采用溶剂分为湿法工艺和干法工艺。
1.1 湿法工艺
湿法工艺成膜操作简单,工艺成熟,易于规模化生产,是目前最有希望实现固体电解质膜量产的工艺之一。按照载体不同,湿法工艺可分为模具支撑成膜、正极支撑成膜以及骨架支撑成膜。
1.1.1 模具支撑成膜
模具支撑成膜常被用于制备聚合物电解质膜及复合电解质膜,将固体电解质溶液倾倒在模具上,随后蒸发溶剂,从而获得固体电解质膜,通过调节溶液的体积和浓度来控制膜的厚度。需要注意的是,为了保证固体电解质膜可以完整的从模具中分离,电解质膜需具备较大的厚度以提供足够的机械强度。
1.1.2 正极支撑成膜
正极支撑成膜常用于无机电解质膜及复合电解质膜的制备,将固体电解质溶液直接浇在正极表面,蒸发掉溶剂后,在正极表面形成固体电解质膜。与模具支撑相比,正极支撑可以获得更薄的固体电解质膜和更好的界面接触。
1.1.3 骨架支撑成膜
骨架支撑常用于复合电解质膜的制备,将固体电解质溶液注入骨架中,蒸发掉溶剂后,形成具有骨架支撑的固体电解质膜。按照是否具备离子传输能力将骨架分为惰性骨架和活性骨架。
湿法工艺的要点是粘结剂和溶剂的选择,特别是对硫化物固体电解质。理想的溶剂应具有低沸点,便于蒸发,同时应该对固体电解质具备良好的溶解性和化学稳定性。对于聚合物电解质,通常选用乙腈、丙酮等溶剂。而大多数硫化物不能用极性溶剂处理,需要选择非极性溶剂,如甲苯、二甲苯等。粘结剂会增加固体电解质膜的阻抗,需通过平衡离子电导率和粘结强度来控制粘结剂的添加量。
1.2 干法工艺
湿法工艺中采用的溶剂可能存在毒性大,成本高的缺点,且残留的溶剂会降低固体电解质膜的离子电导率。干法工艺是将固体电解质与聚合物粘结剂分散成高粘度混合物,然后对其施加足够的压力使其成膜。
需注意的是,干法工艺形成的固体电解质膜通常厚度偏大,会降低全固态电池的能量密度。但干法工艺不采用溶剂,直接将固体电解质和粘结剂混合成膜,不需要烘干,在成本上更加具有优势;同时干法成膜无溶剂残留,可获得更高的离子电导率。
2 全固态电池装配工艺
全固态电池通常采用软包的方式集成。与液态电池生产相比,不需要电解液注入工艺,可能不再需要耗时耗力的化成过程。目前全固态电池的尚处于基础研究阶段,大多数试验验证都基于扣式电池(图4a)和模具电池(图4b)。聚合物电池通常都可以制备成扣式电池,而采用无机电解质的全固态电池通常利用模具电池进行实验,使用粉末压制法制备致密的固体电解质圆片,与正极和负极层贴合并施加压力以确保良好的机械接触。想要获得实际应用的全固态电池,必须开发适配的规模化集成工艺。
对于全固态电池而言,堆叠一起的各组件之间势必会存在各种各样的界面问题。针对聚合物全固态电池,可以通过加热解决聚合物电解质膜同正负极间的界面电阻;而对于氧化物和硫化物电解质膜,则需要进行压制处理改善固体电解质与电极之间的机械接触。将正极、固体电解质膜、负极堆叠包装为软包电池。施加真空将其密封,通过等静压机将对电池施加490MPa的压力(图6),压制后固体电解质膜厚度由40μm进一步减少至30μm,并实现1000次稳定循环。
固态软包叠片电池压片测试模具CN-08
固态电池加压测试模具 CN-10