首页/文章/ 详情

磷酸铁锂VS三元! 材料及电池超详细对比!

1年前浏览425

近年来,磷酸铁锂和三元技术路线之争从未停歇,本文结合两种正极材料及电池的特点,对它们在不同领域的应用进行了对比分析。


1. 磷酸铁锂材料及电池


三维空间网状橄榄石结构的LiFePO4,形成了一维的Li+传输通道,限制了Li+的扩散;同时,八面体FeO6共顶相连,使其电子电导率较低,在大倍率放电时极化较大。为解决LiFePO4材料较低的锂离子扩散和电子电导率,当前技术主要通过纳米化、碳包覆、掺杂等手段加以改善。LiFePO4材料充放电过程主要在LiFePO4及 FePO4两相之间相互转变,体积变化率小,使得材料极其稳定,因而磷酸铁锂材料及电池的安全和稳定性毋庸置疑。

图 1 磷酸铁锂材料的结构模型图


磷酸铁锂电池主要有以下特点:


(1) 磷酸铁锂电池循环性能极好,能量型电池循环寿命可长达3000~4000次,倍率型电池的循环甚至可达上万次;


(2) 磷酸铁锂电池具有优异的安全性能,即使在高温下仍可保持较稳定的结构,使得磷酸铁锂电池安全可靠,甚至在电池出现变形损坏时也不会出现冒烟、起火等安全事故。


另一方面,磷酸铁锂原料资源较为丰富,极大地降低了材料及电池的使用成本,同时由于铁磷元素对环境友好,磷酸铁锂材料及电池对环境无污染。但是,LiFePO4材料的结构特性决定材料具有较低的离子和电子电导率,而且随着温度降低,电子转移阻抗和电荷迁移阻抗均迅速增加,导致其电池低温性能较差。

2. 三元材料及电池


Li(NixCoyMn1-x-y )O2材料被首次报道之后,引起研究者的高度关注。为减少Co涨价带来的成本压力,国内外已开展了三元材料低Co甚至无Co化的研究,此类材料可能成为未来的主流正极材料。


Li(NixCoyMn1-x-y )O2LiCoO2结构有相似之处。NCM111型三元材料为例,其中Li+位于结构中3a位置,NiMnCo随机分布在3b的位置,晶格氧占据6c位置其中过渡金属层结构由NiMnCo组成,且由6个晶格氧包围形成MO6(M=NiCoMn)八面体结构,而锂离子嵌入MO6之间在充放电过程中,锂离子在MO6层间结构中脱嵌,参与电化学反应的电对分别为Ni2+/Ni3+Ni3+/Ni4+Co3+/Co4+Mn元素为电化学惰性,不贡献电化学容量。

图 2 不存在 Li/Ni 混排(a)和存在 Li/Ni 混排(b)的三元材料的结构图


按Ni含量比例可将三元材料和电池分为常规型和高镍型。随着Ni含量的提高,可脱嵌锂增加,材料容量及电池能量密度提高,因此高镍型三元材料和电池是当前研究的热点并充满挑战。


首先,由于Ni2+半径与Li+半径非常接近,随着Ni含量提高,高镍三元材料在高温烧结制备时产生Li/Ni混排概率急剧加大,而进入MO6层的锂脱嵌较为困难,阻碍 Li+传输能力,导致比容量降低及循环性能降低并很难逆转。


其次,随着Ni含量的提高,材料中Ni3+的比例也随之提高,而Ni3+非常不稳定,暴露在空气中非常容易与空气中的水分和CO2反应生成表面残碱,导致三元材料容量和循环性能损失。除此之外,过多的表面残碱会使得三元电池产气严重,影响其循环性能、安全性能等。


三,高价Ni元素还具有较高的催化活性和氧化性,导致电解液分解也引起电池产气。为解决上述难题,前驱体定制化、烧结工艺个性化、离子掺杂、表面包覆改性、湿法处理及生产环境管控成为三元材料厂家的普遍选择。


对于三元电池来说,其性能特点主要有较高的材料质量比容量、质量和体积比能量,较好的倍率性能和低温性能,但由于结构的稳定、镍钴资源的稀缺等,其循环性能较好、安全性能一般,成本较高。


3. 两种材料及电池对比分析


3.1 能量密度


与磷酸铁锂材料相比,三元材料的放电比容量较高,且平均电压也更高,因此三元电池的质量比能量一般较磷酸铁锂高。此外,由于磷酸铁锂材料的真密度偏低、颗粒较小和碳包覆等原因,其极片压实密度约为2.3~2.4 g/cm3,而三元极片的压实密度可以达到3.3~3.5 g/cm3,因此三元材料及电池的体积比能量也远高于磷酸铁锂。

3.2 安全性


从安全性角度来讲,磷酸铁锂材料主体结构为PO4,其键能远高于三元材料MO6八面体的M-O键能,满电态的磷酸铁锂材料的热分解温度为700 ℃左右,而相应的三元材料的热分解温度为200~300 ℃,因此磷酸铁锂材料更加安全。从电池角度来对比,磷酸铁锂电池可以通过全部的安全测试,而三元电池的针 刺和过充等测试并不能轻易通过,需要从结构件及电池设计端等进行改进。


3.3 功率性能


磷酸铁锂材料Li+的活化能只有0.3~0.5 eV,导致其 Li+扩散系数在10-15~10-12 cm2/s 数量级。极低的电子电导率和锂离子扩散系数导致了LFP功率性能不佳。而三元材料的Li+扩散系数约为10-12~10-10 cm2/s,并且电子电导率高,因此三元电池具有更好的功率性能。


3.4 温度适用性


受磷酸铁锂材料较低的电子电导率与离子电导率的影响,导致磷酸铁锂电池低温性能较差。磷酸铁锂电池-20 ℃放电与常温相比,容量保持率仅为60%左右,而同体系的三元电池可达到70%以上。


3.5 成本及环境因素


三元材料含有Ni、Co等稀缺金属,其成本较磷酸铁锂高。随着材料及电池技术水平的提升,三元及磷酸铁锂电池的成本都大幅下降,目前三元电池市场售价高于磷酸铁锂电池。同时,相较于对环境友好的Fe、P元素,三元材料及电池中的Ni、Co元素对环境污染较大。结合上述因素,三元材料及电池的环境管控和废旧回收需求更加迫切。

表 1 磷酸铁锂材料和三元材料综合对比分析


从表 1 可以看出,磷酸铁锂材料与三元材料各有优势,这也决定了两种材料各自的应用领域。
参考:汪伟伟, 丁楚雄, 高玉仙,等. 磷酸铁锂及三元电池在不同领域的应用[J]. 电源技术, 2020, 44(9):4.


©文章来源于锂电联盟会长      

来源:锂电那些事
化学电源电子新能源焊接材料控制
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2023-06-21
最近编辑:1年前
锂电那些事
锂电设备、工艺和材料技术研发应
获赞 199粉丝 172文章 2062课程 0
点赞
收藏
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈