图3,波的人体接收器——眼睛和耳朵
同时,给我们的眼睛和耳朵装上了滤波器,让我们只能看到频率在380THz - 750 THz之间的电磁波,而这个频段的电磁波正是红橙黄绿青蓝紫的颜色;让我们只听到声波频率在20Hz-20KHz 之间的波,试想如果不装这个滤波器,那该是个多么嘈杂的世界,怪不得蝙蝠晚上都睡不着。
图4, 人和动物的听觉频率和发生频率对比
所以呢,声波的频率也可以很高,只要振动的介质足够小,比如电子波,中子波。
那什么是SAW呢?
SAW即声表面波,英文全称为 Surface Acoustic Wave,这里要注意和SIW 区分一下,SIW是传输线的一种,基片集成波导,Substrate integrated waveguid,不得不说,老外的这些缩写还是挺容易混淆的。
声表面波最早是1985年Rayleigh在研究地震波的时候发现的,这种波在固体的表面传播,而且波速仅为电磁波的十万分之一,而且衰减很小。
图5, 声表面波SAW示意图
波速小,衰减小,这不就是射频人想要的吗?波速小,意味着同等频率下的波长就短,波长短意味着它的谐振体就小。这样制作的元器件体积就不是个问题了。
那怎么做成声波滤波器?
在射频滤波器界一直有一个头疼的问题——滤波器小型化,尤其是在低频频段,简直是最最最迫切的问题,很多滤波器设计大神为此绞尽脑汁——电容加载,实在不行就电容器加载上,无奈还是很大,谁让谐振器和波长挂上钩呢?电磁波的波长有多长呢?1MHz的电磁波波长大约为300米,1GHz 的电磁波波长也有0.3米,按照常规的二分之一波长谐振来说,谐振器也得15厘米高,放到我们的手机里面简直不敢想象啊。
这个时候化学家帮了我们,有人翻到了很久之前居里兄弟在1880年前后发现的神奇物质——压电材料和压电效应,这种材料可以实现电波和机械波之间的转换。
图6,压电特性示意图
交叉学科的知识,在什么时候都是最有用的,电子科技的进步,离不开材料物理学的发展。