什么是浮力对流?
浮力对流也称自然对流,是由浮力导致的流动失稳进而发生的对流现象,它普遍存在于我们生活及工业应用中。如下图所示:
(图片来自网络)
重力场中,不稳定的密度梯度是浮力产生的根源,温度和浓度的空间不均匀都会导致密度的改变,本文不讨论浓度改变导致的浮力对流。
浮力对流的方程模型
小温差情形
该方程方程属于椭圆型微分方程。
大温差情形
浮力对流的离散数值格式
温度方程的求解
动量方程的求解
分数步方法中,数值求解压力Poisson方程是整个求解过程的核心。建议使用FFT或者多重网格方法求解,Krynov子空间方法也是不错的选择。
浮力对流
大到海洋环流,小到茶壶中的水流,浮力对流遍布自然界、我们的生活以及工程应用中。浮力湍流是湍流的一类,研究浮力湍流有助于我们深入理解湍流的物理机制。浮力对流的工业应用也至关重要,比如核潜艇发动机的内部冷却系统,自然对流的传热效率越高,机械噪声的剪噪效果越显著。
低瑞利数对流
低瑞利数湍流的稳定性和流动分岔仍然是学术界关注的核心问题之一。朗道最早指出,层流经过不断分岔后就会发展成为湍流。后来的研究进一步指出,流动一般不会经历超过三次分岔,就会进入混沌/弱湍流状态。今天,学界对层流到湍流的转捩路径和机制,距离完全的理解仍然有很远的距离。
(a)
(b)
Fig. 1 Vertical Flow
(a) under OB approximation;(b) with NOB effects and =0.6, for Ra=105, Pr=0.7. All the gray arrows represent velocity vector which are scaled by the local velocity magnitude.
Fig. 2 Rayleigh-Bénard convection bounded by walls and consequently no-slip and non-penetrating boundary conditions has been applied, Ra=105, Pr=0.7
Figure 3: Rayleigh-Bénard convection with horizontal periodic boundaries, for Ra=105, Pr=0.7, and OB approximation is applied.
高瑞利数湍流
高瑞利数湍流中,各种输运过程及其机制是所有相关学者和工程师最关注的核心问题。自然界和工业应用中,绝大多数情形遇到的浮力对流都是湍流。
Figure 4: DNS of thermalturbulent flows with horizontal periodic boundaries under OB approximation for Ra = 2 × 1010,Pr = 0.7.
Time evolution of periodic Rayleigh-Benard convection from initially unstable temperature strafification to the final weakly turbulent state. OB approximation is adopted and $Ra = 107 and Pr = 0.7.