DEMms 案例应用亮点
多尺度离散模拟软件DEMms良好预测了MTO反应器催化剂尺度的流场和反应
8小时颗粒尺度模拟揭示了不满足全混假设的局部区域
首次直接得到了焦炭沉积与催化剂年龄的关系
反应速率在大时间尺度上也存在显著波动
DEMms 软件功能
工业级大尺度气固反应器的模拟通常基于双流体模型。用传统的双流体模型来解析流化床内介观尺度结构需要非常精细的网格和很小的时间步长,因此由于计算资源的限制通常只能模拟秒级的过程,远不足以模拟MTO反应器中的长时间化学过程,例如焦炭沉积和催化剂失活;而且,双流体模型中缺乏对催化剂颗粒焦炭含量分布的详细描述也制约了化学反应的计算精度。
诸如离散相(DPM)或离散元-流场耦合(CFD-DEM)的拉格朗日方法可以提高颗粒尺度的模拟精度,但仍需要消耗大量的计算资源,因此需要更低资源消耗、更高效的新模型,其中“粗粒化模型”通过引入“粗粒化颗粒”来替代真实颗粒,减少了所需模拟的颗粒数或流场网格量,从而大幅降低了计算消耗。DEMms采用了业界先进的EMMS(Energy-Minimizatin Multi-Scale)粗粒化模型,颗粒群体根据介观尺度的气固流场结构自组织构成粗粒化颗粒,从稳定性、统计力学角度对真实颗粒进行等效。与传统粗粒化技术相比,不存在假设条件苛刻的问题;且可以支持更大的粗化率和更长的时间步长,从而在保证模拟精度的同时极大的减少了计算量。
基于介尺度模型的粗粒化
基于异构超算的耦合计算方法
针对中试规模的MTO反应器,使用多尺度离散模拟软件DEMms模拟鼓泡反应器内的气固流场和反应过程,采用与试验相同的工况条件和颗粒属性。计算耦合了DMTO的7项集总反应动力学模型,7中产物均由甲醇直接产生。计算在异构超算平台上完成,其中气相流场在CPU上求解,颗粒在GPU上求解。
中试规模MTO反应器模型、网格和工况
DEMms 模拟结果
01 反应产物分析
乙烯/丙烯比、焦炭含量的发展历程
MTO反应过程的模拟结果与试验结果对比
02 停留时间与焦炭含量
催化剂颗粒停留时间分布(左)和与焦炭沉积的关系(右)
可以看出,焦炭含量与催化剂年龄大致呈正相关,这是由于当前的反应动力学模型中没有焦炭消耗,催化剂颗粒只要处在反应器中,焦炭就会不断生成。年龄小于1h时,颗粒上少量焦炭即可快速产生新的焦炭。1h内的焦炭含量约为6.7g/100gcat,略为小于最佳工况下的7.8g/100gcat;然而根据RTD分布,流出的催化剂颗粒中有62.4%停留时间小于1h,显示当前工艺存在催化剂颗粒停留时间不足的问题,同时也会对催化剂再生造成额外的负担,未能达到产量和能源消耗的最佳平衡。
此外,除了催化物颗粒运动因素之外,本案例还研究了甲醇浓度的不均匀分布对反应速率的影响。
底部关键区域颗粒RTD和气流速度分布
采用多尺度离散模拟软件DEMms,基于EMMS粗粒化技术和集总反应动力学模型对中试规模MTO反应器开展长时间、颗粒尺度的反应流模拟,主要反应产物如乙烯/丙烯比、甲醇转化、焦炭含量等与试验结果一致性良好。研究显示反应器整体上基本满足催化剂颗粒的全混假设,但在局部关键区域仍存在不完全混合,存在优化空间。
对MTO反应器工艺过程的动态行为的详细分析首次直接得到了焦炭含量和颗粒年龄的关系,基于此分析了对反应速率的影响。这是通过实验手段或双流体模型模拟难以获取的。
Xingchi Liu, Ji Xu, Wei Ge,Bona Lu,Wei Wang. Long-time simulation of catalytic MTO reaction in a fluidized bed reactor with a coarse-grained discrete particle method — EMMS-DPM. Chemical Engineering Journal 389(2020), 1-12