1
液滴撞击过热表面现象
液滴撞击过热表面现象在工业应用中具有重要意义。例如,在压水核反应堆PWR中假定发生冷却剂损失LOCA后的再淹没阶段,其中一个重要应用是通过液滴的撞击来冷却热表面。发生冷却损失之后,燃料元件的温度将升高600-900°C,水从底部应急堆芯冷却系统引入,水和蒸气的两相混合物沿燃料棒上升。
2
液滴和蒸汽层建模
3
仿真结果与分析
Part 1
水动力学
1
验证
Anders [1] 等使用高速光学相机对乙醇液滴撞击温度高于Leidenfrost温度的表面进行了实验,观察液滴在与高温热表面相互作用过程中行为。他们的实验涵盖了一系列的撞击速度和角度,并将冲击前后的测得速度根据垂直速度分量表示为韦伯数的函数。模拟相同情况下的液滴,为计算模型提供定性验证,并将仿真得到的各种Weber数与实验测得的数据进行比较,对计算模型进行定量验证。
2
将仿真结果与实验数据进行定性比较。如下图,显示了韦伯数为We=7的情况,将相机拍摄的图片与仿真结果进行了比较。液滴为乙醇,周围的气体是空气。仿真得到的结果与观察结果相匹配。
3
正如Anders和其他许多研究人员所表明的那样,平行于壁面的液滴速度分量变化不大。而所有的韦伯数,撞击后的值为初始值的0.9–0.95倍。并且,由于相互作用,液滴速度的垂直分量发生了显着变化。这种变化的程度取决于液滴直径和贴近液滴接触壁面的角度。也就是说,韦伯数可用于表达这种依赖关系。在下图中,不管是Anders等人的实验结果还是VirtualFlow的模拟结果,都显示了液滴垂直速度的“前后”比率与Weber数的依赖关系。
模拟了直径范围从90μm到2 mm,速度范围从1.2 m/s到35 m/s,贴近角范围从5°到90°的不同液滴撞击热表面的情况。上图所示,在韦伯数增加到约15之前,速度垂直分量碰撞前后的比率随韦伯数的增加而减小。当韦伯数We超过15,随韦伯数的进一步增加,液滴碰撞前后的速度垂直分量比率,不再有明显变化。VirtualFlow软件的这一模拟结果与实验测量结果之间具有良好的一致性。
Part 2
参数研究
碰撞角度的影响
当考虑较小的撞击角时,切向速度分量在液滴的流体力学行为中起着至关重要的作用,因而在传热机理中起着至关重要的作用。在这种情况下,液滴沿着热表面的滑动距离更大,并在更长的时间内保持与壁面紧密靠近,同时随着贴近变得更倾斜。
下图更详细地显示了液滴与表面之间相互作用的时间和距离,在此期间液滴与表面的距离非常贴近,对于特定的液滴(200μm,1.2m/s),从表面向下延伸到5°的更大范围。只有在液滴不解体的情况下,才能有效地研究液滴在相互作用过程中的最大扩散、贴近壁面的时间以及贴近壁面时的运动距离。在液滴破裂的情况下,液滴分裂成更小的液滴,然后需要研究那些更小的液滴。对于小角度的撞击,如在再淹没阶段,液滴将以5°或更小的角度撞击燃料棒。然而,由于在再淹没情况下的高轴向速度,这些液滴撞击热的燃料棒时韦伯数较高。
通过分析和实验研究表明,单个微小液滴在与热表面相互作用期间所提取的热量约为0.05J。这适用于在垂直方向或几乎垂直方向撞击热表面。在这种情况下,液滴在壁面附近的贴近时间为5-8ms的量级。然而,对于几乎水平的冲击,液滴在表面附近的紧密贴近的时间增加。此外,对于高能量冲击,液滴散布较广,并因此冷却了较大的区域,这可以增强的热传递机制。
小于1mm的液滴的倾斜碰撞影响对于理解再淹没过程中的传热机理很重要。虽然这方面研究较少,以上工作可以证实,VirtualFlow软件中Level set界面跟踪方法能够很好地再现这些无论是垂直、近垂直的方式,还是浅层、倾斜的方式相互作用的水动力特性。
【参考文献】
[1] Anders K, Roth N, and Frohn A. TheVelocity Change of Ethanol Droplets During Collision With a Wall Analysed byImage Processing[J]. Exp.Fluids, 1993, 15: 91–96.