来自《我所理解的流体力学》
这里举出四个常见的流体静力学问题,分别是浮力问题,压力容器问题,水下压力问题和液压传动问题。
微分方程的意义更多地体现在当密度和重力加速度不是常数的情况。比如大气压力的计算就是这样。对于大气层来说,越高的地方密度就越低,重力加速度则越小。密度和重力加速度随高度的变化带入到刚才得出的微分方程中,就可以计算出任意高度处的压力。
我们说了质量力不只有总理,还有电磁力和惯性力等,这些力未必是竖直方向。所以需要有三维方向上的方程。这里给出了三个方向的流体静力学通用方程,这个三维的方程称为流体静力平衡方程,也称为欧拉静平衡方程:
我们说过,除了重力,惯性力也是质量力,只要流体内部没有相对运动,或者说流体没有变形,建立方程就都是适用的。比如当水箱静止在斜面上或者匀速沿斜面下滑时,水所受的质量力只有重力,水面与质量力垂直,是水平的。当水箱沿斜面无摩擦自由下滑时,水面是平行于斜面的。因为这时水同时受到重力和惯性力的作用,这俩的合力与斜面垂直。
考虑惯性力得流体静力学问题一般只有两类,一个是恒加速直线运动,一个是恒速旋转运动。
因为一般加速度必须为常数流体才可能保持不变形。对于恒加速直线运动水面是平的,但有一定斜度与总质量力垂直;对于恒速旋转不,同半径上的离心力是不一样的,所以水面不是平的,而是呈抛物面形状。
最后,我们看一个有趣的流体静力学应用,这就是负压鱼缸,这种鱼缸在鱼缸的睁不开一个孔,从外面可以喂食,甚至还可以伸手进去摸小鱼。
然而,水并不会冒出来。理论上,这种鱼缸可以有好几种设计方法。使用中多半是右面这两种。如果鱼缸比较小,并且密闭性也很好,可以采用左边这种简单的方式。如果鱼缸很大,并且散布有可能漏气,就用右边这种方式用一个泵持续超器来保持内部的负压。