导读:接着第九讲的内容,继续分析流动中的能量转换规律。分为四个主题:1.动能方程和内能方程;2.流动中熵和焓的变化;3.轴功、伯努利方程;4.流动中的能量转换。
我们关注的主要是物理而不是数学,所以只要知道各项的含义就可以了。为了下面叙述中容易理解,这里先简要介绍一下张量。张量是矢量概念的扩展,矢量是用加在变量上面的箭头表示,而张亮是用下标表示。如果变量有一个下标,它就表示一个矢量,比如体积力和流速都可以这样表示:
两个相同的单下标变量相乘,表示矢量的点乘:
有了能量方程,我们来试着回答这样几个问题。第一个是。我们知道陨石下落终会被加热,那么是重力作用造成的升温吗?另一个是只通过加热能改变物体的运动状态吗?还有通常说的轴功到底是什么样的一种功?要回答这些问题,仅从总能量方程出发是不行的,动能和内能都是能量,它俩各自的变化需要独立看才行。
现在我们就来推导动能方程,这是x方向的动量方程:
关于这一点我们会在后面做进一步的分析。
为了分析起来清楚易懂。现在只考虑一维流动情况,这是动能方程:
有了总能量方程和动能方程,把它们相减就得到了内能方程:
这其中体积力做功项全部在动能方程中,而换热项全部在内能方程中,但表面力做功分成了两项,分别在动能方程和内能方程中。可以看出,两个原因可以导致内能变化,表面力做功和换热,这里面的表面力做功是除去微团平动之外的那部分,可以认为是表面力使微团变形的功,其实也包含了使微团转动的功。实际流动中表面力做功几乎一定会伴随着流体的连续变形,所以只要有表面力作用于流体,流体的内容都会增加只是多少的问题。比如我们扇扇子的时候,实际上是给空气增加了一点点温度的。当然,这点升温微不足道,气流对人体的降温效果还是占主导地位。
可以结合简单二维流动的情况,进一步分析一下表面力所做的变形功。这是那能方程的分量形式:
如果把表面力中的压力和粘性力分开,就可以写成这样的分量形式:
当压力导致的变形引起体积变化时,做体积功,体积功可以是正的,也可以是负的,对流体作正的体积功是压缩功,负功是膨胀功。或者说压力所做的体积功是可逆的。
把动能和内能在写在一起,只把表面力做功分成两项,这样就可以清楚的看出动能和内能分别的影响因素了:
这里给出四点比较重要的结论:
一、体积力只影响动能,换热只影响内能;
二、表面力既可以改变动能,也可以改变内能;
三、压力引起的内能变化是可逆的;
四、粘性力引起的内能变化是不可逆的,也就是损失。
对比各项的关系就可以很容易的知道轴功是什么了。可以看到总焓中利工换热下都是一一对应的,剩下的就是轴功了。于是,我们可以写出轴功的表达式:
可以看出轴功有两项组成:一项是非定常压力做功,另一项是耗散。对于一个压气机来说,叶片通过旋转对流体轴功,站在固定的空间点开,每个叶片经过时都给予流体扰动,或者说叶片对流体施加非定常压力。
流体增加的能量主要是这样实现的。除此之外,轮毂还对流体施加粘性拖动力,这种力是定常。轮毂通过粘性力拖动流体所做的轴功基本体现为损失。
现在我们来看一下伯努利方程,这是一维流动的动能方程:
把能量方程和伯努利方程写在一起,来看一下它们的关系。首先,当流动为无粘且不可压时,换热只影响内能;如果再加上定常的条件,则轴功为零。于是,能量方程退化为三项机械能之和守恒,而这就是伯努利方程。
现在来看,另一个情况空气从喷口流入静止的大气逐渐减速到零。
这个情况里,整个射流和环境大气的压力都基本是一样的,所以射流是靠与周围静止大气之间的粘性摩擦力减速的,粘性力使射流的动能完全损失,不可逆地转变为内能,并不增加压力。
现在来看看需要考虑气流压缩性的例子。比如流过飞机的气流的能量转换。
同样忽略粘性的情况下,不可压缩流动和可压缩流动的总静压关系是不一样的。可压缩流动的动压多出了一部分,多出来这部分与气流的体积变化有关,是压缩功的体现。伴随着内能的增加,这在内能方程中是有体现的,就是压缩工这一项。
物体高速在大气内运动时表面会产生高温,这种现象称为气动加热,从内能方程可以看出,引起内能变化的三项,分别是压缩、摩擦和换热。
其中的换热对物体只有冷却效果,有加热效果的就是压缩和摩擦两项。虽然书上经常把气动加热称为摩擦生热,实际上压缩的加热效果要更大。如果以物体为参照物,气流高速吹向它,则气流的总能量守恒,气动加热可以理解为动能向内能的转化;如果以大气为参照物,物体高速飞过,气动加热可以理解为物体通过压缩和摩擦对气体做功气体的总能量增加。