首页/文章/ 详情

CFD理论|能量方程形式(1)

1年前浏览221

导读:概括总结不同形式的能量方程。


01
     

动机


   

推导能量方程的微分形式的目的:

  1. 能够表示在计算域(流体域、固体域或流固结合区域)的能量守恒;
  2. 求解流体及固体的温度场;
  3. 得到不同区域不同流体之间的传热。

这个能量方程同时满足于固体、可压缩流动。

不同书本中的能量方程形式各异,今天讲的形式对固体,不可压缩流体。

处理的技巧在于当在固体区域时,把速度场看成是零,因为没有移动的流体,使用这个小技巧今天给出的能量方程对于固体和流体区域都是有效的。

为了简单起见,本文不考虑辐射换热。


02      

推导


   

如下图所示流体(蓝色 区域)沿着固体(红色 区域)表面运动,我们需要求解整个区域,包括流体域与固体域的温度场及热通量。通常需要将区域离散为有限体积或网格,如左图,每个网格都有中心点。通过在网格求解方程,最终得到温度场。


能量方程形式1      

     

首先给出热力学能方程:

 

这个一个标量输运方程的标准形式,方程左侧第一项为非稳态项,通过速度场确定了    的对流项(左侧第二项),右侧第一项为    的扩散项,最后一项为源项。式中    表示热能/内能:


我们通过方程(1)求解得到    ,在将每个网格得到    除以    就可以得到温度场。


能量方程形式2      

     

这个形式的能量方程比较少见,我们可以将方程(2)代入方程(1),得到方程(3):


下一步,利用傅里叶定义表示方程中的热通量    :

热通量的负号只是表示热流的方向是从高温到低温区域。


将方程(4)代入方程(3)就得到更为常见的能量方程形式:

 

 
能量方程形式3      

     

当材料的物性参数(密度、比热容、导热系数)为常数时,方程(5)可以转化为:

对方程(6)左右两边同除于,就可以得到热扩散系数  :


 

下一节,我们继续推导,可压缩流动下能量方程的形式。

来源:BB学长
理论材料
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2023-06-24
最近编辑:1年前
BB学长
硕士 | 研发工程师 公众号BB学长 知乎BB学长
获赞 89粉丝 150文章 173课程 1
点赞
收藏
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈