Fluent提供了三种计算气动噪声的方法:直接方法、混合方法和利用宽带噪声源模型的方法。其中在混合方法中,Fluent提供了两种方法,即Ffowcs Williams- Hawkings积分方法及基于波动方程有限体积求解器的差分声波传播方法。
因此,直接法计算非常困难且消耗计算资源,因为其需要高度精确的数值求解,非常精细的计算网格,以及声学上无反射的边界条件。当在远场中预测声音时,计算成本变得令人望而却步(例如,在翼型问题中需要数百个弦长)。当接收器处于近场(如舱内噪声)时,直接方法变得可行。在许多涉及近场声音的情况下,声音(或伪声音)主要是由于局部动水压力,可以以合理的成本和精度预测。
对于中场到远场噪声的预测,基于Lighthill声类比方法为直接方法提供了可行的替代方案。该方法利用非定常RANS方程、DES、SAS、SDES、SBES或LES等控制方程得到的近场流动,借助波动方程的解析积分解来预测声音。声学类比本质上把声音的传播与其产生分离开来,使人们能够将流动求解过程与声学分析分离开来。
ANSYS FLUENT提供了一种基于FWOWCS Williams and Hawkings(FW-H)公式的方法。FW-H公式采用了Lighthill声类比的通用形式,能够预测单极子、偶极子和四极子等等效声源所产生的声音。FLUENT采用时域积分公式,通过计算几个表面积分,直接计算出指定接收位置的声压或声信号的时间历程。
流场变量(如声源面的压力、速度分量和密度等)的时间精确解是计算表面积分的必要条件。时间精确解可以从非定常RANS方程、大涡模拟(LES)或混合RANS-LES模型中获得,以适用于手头的流动和想要捕捉的特征(如涡脱落)。声源面不仅可以放置在不透水的壁面上,还可以放置在内部(渗透)面上,这使得能够考虑声源面所包围的四极子的贡献。宽频噪声和声调噪声都可以根据流动计算中考虑的流动性质(噪声源)、湍流模型的使用以及流动的时间尺度进行预测。
这种混合模拟方法是为了模拟低马赫数流动的气动声学,声源的计算采用不可压缩流动模型,声源产生的声音传播的计算采用微分波动方程。Fluent中实现的声学波动方程是由Ewert和Schroeder 在恒密度流动假设下推导出的声扰动方程。该模型的主要优点是:
与仅适用于开放空间声传播模型的Ffowcs Williams-Hawking积分求解器相比,扩展了适用性
考虑到人们最终是想要提出一些措施来降低噪声,因此利用噪声源模型可以对声源进行诊断,以确定流动的哪一部分是产生噪声的主要原因。需要注意的是,这些声源模型并不能预测接收器处的声音。