首页/文章/ 详情

FKM规范在非焊接构件中的静强度评估方法介绍(上篇)

精品
作者优秀平台推荐
详细信息
文章亮点
作者优秀
优秀教师/意见领袖/博士学历/特邀专家/独家讲师
平台推荐
内容稀缺
23天前浏览6702

导读:FKM (《Analytical Strength Assessment of Components in Mechanical Engineering》)规范是德国机械工程研究委员会根据机械产品在实际工程中的应用情况,统计出的针对由钢、铸铁及铝材料制成构件的静强度及疲劳强度的评估规则,考虑了大多数对构件强度(静态和动态)产生影响的因素(表面状况、残余应力、结构细节等),可以基于名义应力法或局部应力法使用利用率对焊接和非焊接构件的静强度及疲劳强度问题进行评估,在欧洲各领域得到了大范围的应用。

本文分为上、下两篇,上篇主要结合规范,简要介绍基于FKM规范对非焊接构件采用名义应力法及局部应力法进行静强度评估的流程,希望大家能够对采用FKM规范进行静强度评估的过程有概念上的了解。

下篇将结合FKM针对非焊接构件的手动计算实例及软件计算实例进行介绍,从实例化的的角度分别介绍FKM在非焊接构件静强度评估中的手动及软件计算过程,同时验证FKM Inside ANSYS 软件计算结果的准确性及方便性。

基于FKM规范进行静强度评估采用以下6个步骤进行,如下图1所示,通过应用有限元分析方法、工程计算方法和实验检测得到评估部位的最大使用应力 ,根据材料特性和结构设计参数得到构件局部强度极限 ,然后根据安全因子 ,计算得到部件的强度利用率 

小于1,则构件在外部载荷作用下被评估部位满足强度要求,否则不满足强度要求。

图1 静强度评估过程  

下面针对各步骤展开进行说明:

一、评估应力的获取:

应力可以采用理论力学的基本方法、有限元法、边界元法计算或者也可以通过试验测量。当计算应力时,采用线弹性材料本构模型。所有的应力,包括应力幅,最初都需要考虑符号。下面分别说明一下名义应力法及局部应力:

1、名义应力:名义应力在规范中采用S以及T表示。名义应力法有其适用范围:

① 一般针对比较容易获得名义应力的构件,例如棒状及壳构件。

② 采用名义应力法需要材料具有足够的韧性(本规范中材料的韧性基于延展率A进行考虑,一般规定A ,例如GJS,GJM以及铝材(锻铝或铸铝)等材料)。

通常,作用于杆状构件的应力类型包括:一个轴向应力(拉伸或者压缩),两个弯曲应力,两个剪应力以及一个扭转应力,各应力分量计算公式参考如下:

2、局部应力: 局部应力包含了由几何缺口产生的峰值应力。在可以定义参考截面的情况下,可以通过采用名义应力乘以应力集中因子的方法计算局部应力。然而,局部应力法通常采用能反映构件真实几何形状的实体模型利用有限元方法计算得到。局部应力法适用于所有构件。局部应力说明如下,参见FKM规范Figure0.3-3:

① 2D:应力 , 以及 在平面内;Z方向的正应力及剪应力被忽略,或者

② 3D:构件表面的主应力 ,以及垂直于表面的 。主应力只有在参考表面有外力时才产生。

图2 参考点处应力分量

二、材料属性的修正

材料的屈服强度和抗拉强度通常可以依据规范和标准进行测试,或者直接从标准中获得,然而标准中的试验试件有特殊要求(比如直径、光滑、缺口以及温度等要求),而实际构件的几何尺寸、工作环境温度等不可能与其一致,所以不能直接将材料的屈服和抗拉强度直接用于静强度的评估。所以材料属性修正这一步骤的目的是考虑构件实际尺寸、工作环境温度和应力状态等修正得到构件的每个评估部位的实际屈服强度及抗拉强度。

1、几何尺寸因子 该因子主要考虑由于实际构件的尺寸增加引起的材料强度的降低,在材料标准所规定的尺寸范围内有效。根据不同的材料分组采用不同的公式可以进行计算,具体计算公式参见FKM规范。

2、各向异性因子 材料经铣削、滚压及锻造等工艺处理后,主方向的材料强度高于垂向的材料强度,所以引入各向异性因子。该因子的确定取决于抗拉强度,是垂向强度与主方向强度的函数。具体数据参考FKM规范。

综合考虑了几何尺寸因子及各项异性因子之后材料抗拉及屈服强度极限的修正公式如下表所示:

3、压缩强度及剪切强度因子: 材料压缩和剪切时的强度与材料拉伸时是不一样的,压缩强度及剪切强度因子用来考虑在受压或者受剪状态下材料强度极限的变化,修正公式如下表所示:

4、温度因子: FKM规范将材料的工作环境温度分为常温、低温和高温,低温情况在FKM规范中未考虑。常温条件下,可忽略温度对材料强度的影响。因此温度因子主要考虑了材料强度由于温度升高所引起的强度降低。受短期或长期高温度影响的强度值分别用 或者

表示,该值并不直接用于强度评估,温度因子后续与安全因子一起考虑。

三、设计参数的修正:

针对非焊接构件,设计参数包含截面因子 ,灰口铸铁以及软化铝因子。

1、截面因子 结构某个局部区域出现屈服并不会导致结构整体强度失效,通过采用截面因子以充分考虑应力敏感区域或截面的应力梯度对强度的影响。截面因子定义为敏感截面区域的最大理想弹性应力与材料屈服强度的比值。 的先决条件是不均匀的应力分布,参见图3(名义应力法)及图4(局部应力法). 对于常应力截面

图3 名义应力法截面因子

图4 局部应力法截面因子

名义应力法及局部应力法截面因子的计算公式参考如下表格:

备注:虚拟屈服强度 的计算,分两种情况:

① 对于应力集中因子 的情况, 应该根据FKM规范Table1.3.1通用的方式指定。

② 其他情况,采用公式 计算。

其中:

(1)E,杨氏模量; 临界应变; 这两个值均可参见FKM规范Table1.3.1

(2) 应力集中因子;

2、灰口铸铁因子 :由于灰口铸铁的拉伸、压缩和弯曲时材料本构为非线性弹性,特引入本因子。其他钢、铝合金材料等,

3、软化铝因子 :只针对软件铝材料考虑

四、构件强度极限:

在确定了各相关影响因子后,可以计算构件的强度极限。

五、安全系数:

对于塑性材料和非塑性材料,选取安全因子的大小不同。总安全系数计算公式参考表格,详细说明请参见FKM规范。

六、 静强度评估:

基于构件的实际应力、修正后的构件强度极限以及安全因子计算构件的利用度。其中名义应力法首先进行单项利用度计算,之后对各单项利用度进行合成计算组合利用度。局部应力法直接利用等效应力进行利用度的计算。相关公式参见如下表格:

其他说明:

1、FKM规范系统性很强,基于名义应力法及局部应力法的静强度评估流程清晰,相关过程均可以通过规范内的公式及表格得到相对准确的数据。本文鉴于篇幅原因,不能将所有过程公式及表格一一列出,请感兴趣人员系统学习FKM规范。

2、FKM Inside ANSYS是结合FKM规范在ANSYS Workbench平台中开发的强度评估软件,下一期将针对FKM规范及FKM Inside ANSYS软件进行非焊接构件实例评估介绍,欢迎关注。

3、文中所提到的FKM规范指2012年的V6。

作者:王庆艳,安世中德工程师,仿真秀科普作者,车辆工程专业硕士学位,10多年的CAE行业技术服务、工程技术经验,参与了航空航天、电子、石油石化等多个行业的多个仿真咨询及开发项目,积累了大量工程仿真应用经验。目前同时负责基于FKM规范开发的静强度及疲劳强度评估工具、基于VDI2230规范开发的螺栓强度校核工具的相关技术工作。

声明:原创文章,首发仿真秀,部分图片源自网络,如有不当请联系我们,欢迎分享,原创视频,版权所有,未经授权,禁止私自转载,转载请联系我们。

FKM结构基础静力学通用
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2018-12-24
最近编辑:23天前
仿真圈
技术圈粉 知识付费 学习强国
获赞 9445粉丝 20719文章 3274课程 208
点赞
收藏
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈