非常尊重并感谢科研人员做出的辛勤贡献!若有侵权,烦请联系处理!
若有翻译不当之处,恳请批评指正!
本篇研究论文提出了一种基于无监督特征学习的健康指标构建方法,该方法通过多尺度自编码器网络学习传感器信号的特征,通过给特征分配不同的权重,强化有效特征并且抑制无用特征。通过计算基本样本数据与当前获取数据特征的相对相似度,并且将其作为健康指标来表示机器的健康状况。本文适合数据处理、设备性能评估、故障诊断等领域学者学习。
本篇将介绍第2篇:实验结果与讨论以及结论
正文共: 7354字8图
预计阅读时间: 19分钟
论文信息
论文题目:An Unsupervised Feature Learning Based Health Indicator Construction Method for Performance Assessment of Machines
期刊、年份:Mechanical Systems and Signal Processing,2022
作者:Liang Guo , Yaoxiang Yu , Andongzhe Duan , Hongli Gao *, Jiangquan Zhang
机构:
Engineering Research Center of Advanced Driving Energy-saving Technology, Ministry of Education, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China目录
1. 引言
2. 所提方法
2.1 多尺度自编码器网络
2.2 相对相似性度量
3. 实验和讨论
3.1 研究案例一:铣刀数据的健康指标构建
3.2 研究案例二:轴承数据的健康指标构建
4. 结论
摘要
关键词: 故障预测, 健康指标, 多尺度卷积自编码器网络, 遗传算法, 相对相关距离
Ⅲ 实验结果与讨论
通常,健康指标主要分为两类,直接健康指标和间接健康指标[7]。直接健康指标通常是用光学、辐射、视觉等直接测量。因此,直接健康指标具有捕捉实际几何变化的优点[8]。然而,在一些工业应用现场,直接测量显得不方便甚至大多数时候变得不可能。与直接健康指标不同的是,间接健康指标是基于设备运行过程中测量到的参数,这些参数与设备退化状态相关联。对于间接健康指标,并不会直接捕获设备状况,但是会从振动、声音和电流信号这些可测量的参数中提取设备状况。一般而言,间接健康指标构建方法包含三个步骤:(1)数据获取;(2)特征提取;(3)特征融合[9]。Lei等人[10]提取了轴承振动信号的时域、频域以及时频域特征,然后基于这些特征通过改进的自组织映射神经网络构建健康指标。Soualhi等人[11]提出了一种轴承和齿轮的健康监测方法。这种方法是从电信号中的时域和频域特征中构建新的指标。Duong等人[12]考虑了振动加速度信号的非稳定性,提出了一种轴承健康指标构建方法,这种方法使用了离散小波包变换,将原始信号分解为不同的子带,从每个子带信号中提取健康指标并且使用局部加权回归使之平滑。上述工作表明,源信号的特征提取是健康指标构建的重要一步。通常,特征提取过程是基于一些手工的信号处理方法,这些方法被称为手工特征提取方法[13,14]。然而,这些方法过于依赖相关领域专家的先验知识,而这通常很难获得。
为解决人工特征提取方法严重依赖领域专家先验知识的问题,提出了基于特征学习的特征提取方法。近年来,基于特征学习的方法在故障诊断领域得到了广泛的应用。Jia等人[15]提出了一种堆叠式自编码器神经网络,从振动信号的频域学习特征。与现有的一些智能故障诊断方法相比,该方法获得了更好的状态识别结果。在此基础上,提出了多种基于深度学习的故障诊断方法。Jing等人[16]设计了一种卷积神经网络,用于直接从振动信号的频域学习特征。Shao等人[17]开发了一种改进的卷积深度信念网络,用于滚动轴承的特征学习和故障诊断。结果表明,该方法比传统方法更有效。Guo等人[18]提出了一种多尺度注意力网络来学习铣刀特征并预测铣刀剩余使用寿命。Zhao等人[19]提出了一种深度残差收缩网络来提取高噪声条件下的特征。在深层结构中插入软阈值作为非线性变换层,消除不重要的特征。在现有的工作中,基于特征学习的故障诊断方法一般都是结合监督深度学习理论提出的。对于这些方法,需要带标签数据来训练有监督深度学习模型。但是对于机器的在线性能评估,由于机器装配的复杂性,带标签数据可能无法获得[20]。为了从未带标签的数据中学习内在特征,需要探索一些新的无监督特征学习方法。自编码器是一种学习将输入复 制到输出的神经网络[21]。它有一个内部层,用来描述表示输入数据的代码。因此,自编码器被广泛应用于机械故障诊断领域。Ping等人[22]开发了一种基于对数正态分布的变分自编码器算法。该算法利用三层变分自编码器网络模型来学习和融合监测机器的特征。Sun等人[23]使用堆叠自编码器来学习特征。结果表明,所提出的稀疏堆叠去噪自编码器能够缓解标签数据的压力。Fan等人[24]提出了一种基于自编码器的方法进行无监督异常检测。在该方法中,设计了一个自编码器来捕捉建筑能耗数据的内在特征。上述论文中的自编码器一般用于学习未带标签数据的特征。虽然自编码器能够进行无监督特征学习,但对于时间序列信号,如振动信号、电流信号的处理比较困难。此外,在以往的工作中,网络结构都是人工确定的,这是一种耗时且严重依赖先验知识的方法。为此,在构建神经网络后,加入了智能优化算法,以提高神经网络的性能。Salah等人[25]利用遗传算法(Genetic algorithm,GA)寻找长短时记忆网络的最优时滞和层数。在电力负荷预测分析中验证了该方法的有效性。Hossain等人[26]应用遗传算法优化深度置信神经网络的隐藏单元数量、epoch数量和学习率。结果表明,该方法可以提高目标识别和抓取任务的性能。Abid等人[27]利用特征空间变换和基于分集因子(diversity factor)的遗传算法优化检测器在非自特征空间中的分布。实验结果表明,该方法能够显著减少现有故障检测框架的负载。尽管如此,将优化方法应用于工业监测数据的无监督特征学习领域的研究还很少。
在健康指标的构建中,除了特征提取之外,另一个重要的方面就是特征融合。近年来,提出了一些融合所提取特征的算法。Atamuradov等人[28]提出了一种基于数据融合的健康指标构建方法。采用自适应特征融合方法动态改变所提取特征的权值。Guo等人[29]开发了一种基于递归神经网络的健康指标构建方法。将时域、频域和时频域特征输入到递归神经网络中,将特征融合到轴承的健康指标中。Akhand等人[30]使用Jensen-Renyi发散技术对退化的多尺度熵特征与健康的多尺度熵特征向量的概率分布进行区分,从而形成所需的健康指标。这些特征融合方法只依赖于特征的绝对幅值,不考虑初始时刻特征值与当前时刻特征值的差异。这意味着机器的工况可能会影响健康指标的幅值。
为了解决这些问题,本文提出了一种新的基于无监督特征学习的健康指标构建方法。本文重点介绍该方法的主要构建过程:
(1)构建了无监督多尺度卷积自编码器网络(Multiscale convolutional autoencoder network,MCAN),从监测信号构建的样本数据中学习特征。利用遗传算法对所建网络的超参数进行优化;
(2)一旦训练好网络,将初始时间的样本数据输入到MCAN中学习特征;
(3)对所有学习到的特征,根据趋势赋予不同的权重
(4)通过计算基准样本数据与当前获取的样本数据之间的特征相对相似性来表示机器当前的健康状况。为了验证所提方法的有效性,使用两个数据集进行了案例研究。在这两个案例中,所提出的方法得到了比三种比较方法更好的结果。
总之,两个主要贡献如下:
(1)构建MCAN,从三个不同尺度层次学习特征,能够学习到足够的退化信息。在训练过程中,利用GA搜索MCAN的最优结构。并且,只有在健康状态下采集的信号才用于训练。
(2)提出了一种加权相对相似度方法来构建健康指标。不同于以往对所有特征一视同仁的研究,本文提出的方法对所有特征赋予不同的权重,以强调有用特征,抑制冗余甚至消极特征。为了度量这些权重,根据构建健康指标的趋势,提出了二次规划。
本文其余部分的组织如下:在第2节中,详细介绍了所提出的方法。然后,在第3节中,使用两个数据集对提出的方法进行评估。在第4节中,得出结论。
Ⅱ 本文所提方法
图1 本文所提方法的完整架构
为了从监测数据中自动提取丰富的特征信息,本文构建了一种MCAN。MCAN是一种无监督的特征学习网络,通过无标签的样本数据进行训练。MCAN的网络结构如图1所示,由多尺度特征提取模块和重构模块组成。当在机器初始阶段通过一些无标签监测样本数据将MCAN训练的很好时,利用多尺度特征提取模块对当前监测样本数据进行特征提取。
如图1所示,多尺度特征提取模块包括
式中*代表卷积运算,
注明
1、由于本文翻译篇幅过大,本篇到此结束,下一篇将介绍实验与讨论以及结论。
2、若需引用本文的公式、专业术语等内容建议再细读原论文核实;若本文对您的论文idea有帮助,建议引用原论文~
参考文献
[1] Guo L , Yu Y , Duan A , et al. An unsupervised feature learning based health indicator construction method for performance assessment of machines[J]. Mechanical Systems and Signal Processing, 2022, 167:108573-.