首先对毫米波雷达做一个通俗的定义:他是一个传感器,将预设定好的信息通过天线电路发送出去(此时空间中已有携带信息的电磁波),碰到前方物体,电磁波会反射回来,再通过解析发射和接收信号的异同,将处理后的数据以友好的方式呈现出来;整个信号处理流程有各自的细分专业领域,是一个比较庞大的应用系统;
毫米波雷达的应用方面较广,比较熟悉的有目前火热的自动驾驶,农林业无人机等,除此之外安防检测、水利预警、工控领域也有应用场景;本文以车载行业为切入点进行简单剖析;
一、应用场景
车载行业目前国内规定的工作频段在77G,一方面芯片集成技术已经较为成熟,一些芯片供应商如德州仪器,NXP、英飞凌、加特兰半导体等,近年的出货量随着行业的发展急速上升。车载雷达主要工作方式有长距、中距、短距离检测;细分场景有盲区检测[blind-spot detection (BSD)], 变道辅助功能[lane-change assist (LCA)],前/后向预警系统[front/rear cross-traffic alert (F/RCTA)], 自动紧急制动[autonomous emergency braking (AEB)],和自适应巡航 [adaptive cruise control (ACC)]等;
雷达测距是通过测量回波时延来计算, 测速是根据多普勒效应所得的多普勒频移来计算,对于 FMCW 信号体制的汽车防撞雷达系统, 回波时延对应中频信号的差拍频率, 多普勒频移对应多周期脉冲间的多普勒频率, 则时域参数估计问题即转换成频域频率估计问题;在信号处理端,相关处理手段包括快速傅里叶变换Fast Fourier Transform, FFT,Multiple Input Multiple Output, MIMO体制,Digital Beam Forming, DBF自适应数字波束形成,恒虚警率(Constant False Alarm Rate, CFAR)检测,算法领域包括多重信号分类(Multiple Signal Classification, MUSIC) 算法及 Root-MUSIC 等扩展算法;
以TI1642处理框架为例,主要由射频前端、中央控制单元和DSP三部分构成,再外接控制电路(电源、CAN),感兴趣的朋友可以参考下面的链接:
AWR1642 Single-Chip 77- and 79-GHz FMCW Radar sensor datasheet (Rev. C) (ti.com.cn)
整个过程通常有5个步骤:
初始化系统,主要是上电,启动预处理模块;
开始芯片端的一些配置工作,比如天线通道使能,采数功能,chirp波形配置等(FMCW体制雷达);
FPGA数据处理:此过程对回波信号处理;
DSP数据处理:分析数据过程,结合相应的算法、软件功能,得到衡量雷达的关键参数指标;
CAN总线通信:数据可视化过程;
TI官网毫米波专题培训;
电子科技大学魏青老师的雷达原理课程;